This paper develops tests of the null hypothesis of linearity in the context of autoregressive models with Markov-switching means and variances. These tests are robust to the identification failures that plague conventional likelihood-based inference methods. The approach exploits the moments of normal mixtures implied by the regime-switching process and uses Monte Carlo test techniques to deal with the presence of an autoregressive component in the model specification. The proposed tests have very respectable power in comparison to the optimal tests for Markov-switching parameters of Carrasco et al. (2014) and they are also quite attractive owing to their computational simplicity. The new tests are illustrated with an empirical application to an autoregressive model of U.S. output growth.

View the document

Latest Publications

2017s-08 WP
An experimental investigation of rating-market regulation
Claudia Keser, Asri Özgümüs, Emmanuel Peterlé et Martin Schmidt
View the document

2017s-07 WP
Statistical tests of the demand for insurance: an “all or nothing” decision
Anne Corcos, François Pannequin et Claude Montmarquette
View the document

2017RP-02 PR
Politiques favorables à l’innovation en santé
Nadia Benomar, Joanne Castonguay, Marie-Hélène Jobin et François Lespérance
View the document

2017RP-01 PR
Évaluation économique du service de premiers répondants sur le territoire de l’agglomération de Montréal
Nathalie de Marcellis-Warin, François Vaillancourt, Ingrid Peignier, Brigitte Bouchard-Milord et Alain Vaillancourt
(document unavailable)

2017MO-02 MO
Perception des risques - Baromètre Cirano 2017
Nathalie de Marcellis-Warin et Ingrid Peignier
View the document


Center for Interuniversity Research and Analysis of Organizations
1130 rue Sherbrooke Ouest, suite 1400
Montréal, Québec (Canada) H3A 2M8
(514) 985-4000
(514) 985-4039
reception@cirano.qc.ca

© 2017 CIRANO. All rights reserved.



Partner of :