

Behavioral Determinants of Blood Donation Theory and Empirical Findings in the French Context

Sirven N.^{1,2}, Chopard B.¹, Errea M.³

- 1. LIRAES (EA 4470) Univ. Paris Descartes
- 2. Institute for Research and Information in Health Economics (IRDES), Paris
- 3. School of Public Health and Health Sciences, Univ. of Massachusetts Amberts, MA (USA)

Séminaire de laboratoire, CIRANO – Mercredi 24 avril, Montréal (QC) Canada.

The Economics of blood donation

- How to maintain/increase blood products supply?
 - Financial incentives
 - o Titmuss (1970) payment will decrease blood donation, increase unsafe blood donation
 - o vs. Lacetera et al. (2013) using RCT in US find paid donation works! Still, can't always pay or increase altruism...
 - Increasing recruitment campaigns efficacy (Behavioral economics)
 - Lots of new innovative hypotheses e.g. Why Intention of donating blood > Share of donors? (Slonim et al. 2014)
 - o RCTs led to new explanations → Present (over time) biased preferences, Unsure of value of donating, etc.

The Economics of blood donation

- How to maintain/increase blood products supply?
 - Financial incentives
 - o Titmuss (1970) payment will decrease blood donation, increase unsafe blood donation
 - o vs. Lacetera et al. (2013) using RCT in US find paid donation works! Still, can't always pay or increase altruism...
 - Increasing recruitment campaigns efficacy (Behavioral economics)
 - Lots of new innovative hypotheses e.g. Why Intention of donating blood > Share of donors? (Slonim et al. 2014)
 - o RCTs led to new explanations → Present (over time) biased preferences, Unsure of value of donating, etc.
- Focus on new determinants of blood donation
 - Preferences as new levers (opportunity cost + information already considered)
 - Need for a theoretical background to clarify intrinsic / extrinsic incentives
 - Provide the basis for RCTs in France (provide strong results, but difficult to generalize—US context)

- The French context
 - Voluntary non-remunerated blood donation
 - System based on Titmuss' principle, like many European countries
 - o Blood donation is a pro-social behavior (Bénabou & Tirole, 2006)
 - Blood donation may be associated with adverse health outcomes
 - o Dizziness, faint, pain & discomfort, etc.
 - Not 100% certain of the outcome = risky pro-social behavior

- The French context
 - Voluntary non-remunerated blood donation
 - System based on Titmuss' principle, like many European countries
 - o Blood donation is a pro-social behavior (Bénabou & Tirole, 2006)
 - Blood donation may be associated with adverse health outcomes
 - Dizziness, faint, pain & discomfort, etc.
 - Not 100% certain of the outcome = risky pro-social behavior
- Is risk aversion a barrier to blood donation?
 - Contribution to Public health policy
 - Increasing the effectiveness of recruiting campaigns in France
 - Contribution to Economics
 - o Extending model for pro-social behavior (Bénabou & Tirole, 2006) to risk-aversion
 - O Adapting the model to the French context and use French data to test assumptions

If the individual does not donate blood, or a = 0, the individual utility level is

$$U(H + x\gamma_a E(v_a \mid a = 0)).$$

If the individual does not donate blood, or a = 0, the individual utility level is

If the individual does not donate blood, or a = 0, the individual utility level is

$$U(H + x\gamma_a E(v_a \mid a = 0)).$$

If the individual donates blood, or a = 1, then the expected utility level equals

$$v_{a} + x\gamma_{a} \left(E(v_{a} \mid a = 1) - E(v_{a} \mid a = 0) \right) - C - (1 - E(\widetilde{y}))H$$

$$\geq \frac{1}{2} r_{A}(H) \left(H^{2} \sigma^{2} + (v_{a} + x\gamma_{a} E(v_{a} \mid a = 1) - C - (1 - E(\widetilde{y}))H)^{2} \right). \tag{1}$$

$$\underbrace{v_{a}}_{} + x\gamma_{a} \left(E(v_{a} \mid a = 1) - E(v_{a} \mid a = 0) \right) - C - (1 - E(\widetilde{y}))H
\ge \underbrace{\frac{1}{2}}_{} r_{A}(H) \left(H^{2}\sigma^{2} + \underbrace{(v_{a}}_{} + x\gamma_{a}E(v_{a} \mid a = 1) - C - (1 - E(\widetilde{y}))H)^{2} \right). \tag{1}$$

Variable	First effect (lhs)	Second effect (rhs)	Testable assumption
Pure altruism	+	_	First effect > Second effect

We show in appendix that a type v_a individual donates blood if and only if:

$$v_a + x\gamma_a \left(E(v_a \mid a = 1) - E(v_a \mid a = 0) \right) - C - (1 - E(\widetilde{y}))H$$

$$\geq \frac{1}{2}r_A(H) \left(H^2\sigma^2 + (v_a \mid x\gamma_a E(v_a \mid a = 1) - C - (1 - E(\widetilde{y}))H)^2 \right). \tag{1}$$

 Variable
 First effect (lhs)
 Second effect (rhs)
 Testable assumption

 Pure altruism
 +
 First effect > Second effect

 Image: Pure altruism
 Image: Pure altruism
 Image: Pure altruism
 Image: Pure altruism

The second effect

Blood donation reduces expected wealth by means of its expected negative impact on health

We show in appendix that a type v_a individual donates blood if and only if:

$$v_{a} + x\gamma_{a} (E(v_{a} \mid a = 1) - E(v_{a} \mid a = 0)) - C - (1 - E(\widetilde{y}))H$$

$$\geq \frac{1}{2} r_{A}(H) (H^{2}\sigma^{2} + (v_{a} + x\gamma_{a}E(v_{a} \mid a = 1) - C - (1 - E(\widetilde{y}))H)^{2}). \tag{1}$$

Variable	First effect (lhs)	Second effect (rhs)	Testable assumption
Pure altruism	+	_	First effect > Second effect
Net reputational gain	+	(cf. details)	"Shame > Honor"

Net reputational gain = f (overall participation)

When participation increases, stigma rises because the least altruistic agents start giving blood

$$v_{a} + x\gamma_{a} (E(v_{a} \mid a = 1) - E(v_{a} \mid a = 0)) - C - (1 - E(\widetilde{y}))H$$

$$\geq \frac{1}{2} r_{A}(H) (H^{2}\sigma^{2} + (v_{a} + x\gamma_{a}E(v_{a} \mid a = 1) - C - (1 - E(\widetilde{y}))H)^{2}). \tag{1}$$

Variable	First effect (lhs)	Second effect (rhs)	Testable assumption
Pure altruism	+		First effect > Second effect
Net reputational gain	+	(cf. details)	"Shame > Honor"
Cost of blood donation	_	+	First effect > Second effect

$$v_{a} + x\gamma_{a} \left(E(v_{a} \mid a = 1) - E(v_{a} \mid a = 0) \right) - C - \underbrace{\left(1 - E(\widetilde{y}) \right)} H$$

$$\geq \frac{1}{2} r_{A}(H) \left(H^{2} \sigma^{2} + (v_{a} + x\gamma_{a} E(v_{a} \mid a = 1) - C - \underbrace{\left(1 - E(\widetilde{y}) \right)} H \right)^{2} \right). \tag{1}$$

Variable	First effect (lhs)	Second effect (rhs)	Testable assumption
Pure altruism	+	_	First effect > Second effect
Net reputational gain	+	(cf. details)	"Shame > Honor"
Cost of blood donation	_	+	First effect > Second effect
Subjective health loss	_	+	First effect > Second effect

$$v_{a} + x\gamma_{a} (E(v_{a} \mid a = 1) - E(v_{a} \mid a = 0)) - C - (1 - E(\widetilde{y}))H$$

$$\geq \left(\frac{1}{2}r_{A}(H)\right) \left(H^{2}\sigma^{2} + (v_{a} + x\gamma_{a}E(v_{a} \mid a = 1) - C - (1 - E(\widetilde{y}))H\right)^{2}). \tag{1}$$

Variable	First effect (lhs)	Second effect (rhs)	Testable assumption
Pure altruism	+	_	First effect > Second effect
Net reputational gain	+	(cf. details)	"Shame > Honor"
Cost of blood donation	-	+	First effect > Second effect
Subjective health loss	-	+	First effect > Second effect
Health	-	?	Difficult to say

$$v_{a} + x\gamma_{a} \left(E(v_{a} \mid a = 1) - E(v_{a} \mid a = 0) \right) - C - (1 - E(\widetilde{y}))H$$

$$\geq \left(\frac{1}{2} r_{A}(H) \left(H^{2} \sigma^{2} + (v_{a} + x\gamma_{a} E(v_{a} \mid a = 1) - C - (1 - E(\widetilde{y}))H)^{2} \right). \tag{1}$$

Variable	First effect (lhs)	Second effect (rhs)	Testable assumption
Pure altruism	+	-	First effect > Second effect
Net reputational gain	+	(cf. details)	"Shame > Honor"
Cost of blood donation	-	+	First effect > Second effect
Subjective health loss		+	First effect > Second effect
Health	-	?	Difficult to say
Risk aversion		_	Second effect

Data

- ESPS 2012 The French health, health care, and insurance survey (IRDES, since 1988)
- Representative of the French population living in the community
- N= 10,132 obs. Sample restricted to 18-70 years old (legal age for blood donation)
- Variables
 - Health, demographics, social, and economic data
 - o Partnership with EFS led to a module on blood donation : classification of donors, motivations

Classification of donors

- Not everyone can be a donor → Health requirements
- Potential sample selection issue as health is endogenous to the theoretical model

Have you already donated blood at some point in your life?

- Identification strategy
 - Sample selection (conditional choice)
 - Hurdle model favored over the Heckman model
 - Reason 1: The only exclusion criteria (health) is endogenous to the theoretical model
 - o Reason 2: Focus on the reason of the current choice to give, not the potential one

- Identification strategy
 - Sample selection (conditional choice)
 - Hurdle model favored over the Heckman model
 - Reason 1: The only exclusion criteria (health) is endogenous to the theoretical model
 - Reason 2: Focus on the reason of the current choice to give, not the potential one
 - Hurdle models assume that the residuals of the 2 equations are uncorrelated
 Different-person analogy (two independent generating processes)
 - (Eq. 1) Health profess. decide over (dis-)qualification of the individual (≠ Grossman 1972)
 - o (Eq. 2) The individual (if qualified) decides or not to give her blood

• A bivariate Probit model:

$$y_{1j}^* = x_j \beta + \epsilon_{1j}$$
 $E(\epsilon_1) = E(\epsilon_2) = 0$ $Var(\epsilon_1) = Var(\epsilon_2) = 1$ $y_{2j}^* = z_j \gamma + \epsilon_{2j}$ $Cov(\epsilon_1, \epsilon_2) = \rho$

- \circ Note 1: similar to Heckman model where $\rho = 0$ (to within a constant factor σ_{u})
- Note 2: identification works fine in hurdle if $\beta \neq \gamma$ (i.e. support the 2 generating processes)

A bivariate Probit model:

$$y_{1j}^* = x_j \beta + \epsilon_{1j}$$
 $E(\epsilon_1) = E(\epsilon_2) = 0$ $Var(\epsilon_1) = Var(\epsilon_2) = 1$ $y_{2j}^* = z_j \gamma + \epsilon_{2j}$ $Cov(\epsilon_1, \epsilon_2) = \rho$

- \circ Note 1: similar to Heckman model where $\rho = 0$ (to within a constant factor σ_{u})
- Note 2: identification works fine in hurdle if $\beta \neq \gamma$ (i.e. support the 2 generating processes)
- Model specifications and Robustness checks
 - Alt. model is Heckman with weak exclusion criteria, with IMR
 - Exclusion criteria (Health, BMI) + Altruism (Organ donor, vaccine)
 - Choice of explanative variables (x_i , z_i)
 - Proxies for main explanative variables (endogenous to the theoretical model)
 - o Controls (exogenous to the theoretical model) Age, sex, educ., income, survey mode
 - Crossed-terms systematically analyzed

Main variables	Proxy measures
Risk aversion	Self-report of risk-aversion on a 10 points scale
Altruism (pure & impure)	- Organ donor after death (not associated with cost, no potential health damage) Estimation of pure altruism as the difference btw Altruism & Net rep gain (impure alt.)
Net reputational gain	A function of donors participation rate: (Nb active – 1) / (Nb Active + Potential)
Cost of blood donation	Transportations costs approximated by the place of residence (spatial environment)
Subjective health loss	- Self-reported "fear of health consequences" as a reason for non donation (censored) - Estimates on qualified non-donors = f (Isolation; generation) + Predicted value for all
Health	MCA index of seven physical and mental health measures

Table 1. Sample descriptive statistics

Variables	Mean	Std. Dev.	Min	Max
Blood donor category				
Active	0.068		0	1
Potential	0.543		0	1
Disqualified	0.389		0	1
Main variables				
Risk-aversion scale	5.846	2.425	0	10
Organ donor	0.562		0	1
Donors participation rate	0.109	0.021	0.084	0.162
Living area				
Outer suburbs	0.203		0	1
Multipolar town	0.057		0	1
Urban center	0.534		0	1
Rural area	0.206		0	1
Health index (MCA)	0.713	0.155	0	0.914
Fear of health consequences	0.008		0	1

Table 1. Sample descriptive statistics

Variables	Mean	Std. Dev.	Min	Max
Blood donor category				
Active	0.068		0	1
Potential	0.543		0	1
Disqualified	0.389		0	1
Main variables				
Risk-aversion scale	5.846	2.425	0	10
Organ donor	0.562		0	1
Donors participation rate	0.109	0.021	0.084	0.162
Living area				
Outer suburbs	0.203		0	1
Multipolar town	0.057		0	1
Urban center	0.534		0	1
Rural area	0.206		0	1
Health index (MCA)	0.713	0.155	0	0.914
Fear of health consequences	0.008		0	1

Table 3.1. Model estimates – Equation of interest

Dep. var.	Active donor (1) vs. Non-donor (0)				
	Hure	Heck	man		
Estimates	Coeff.	t-stat	Coeff.	t-stat	
Main variables					
Risk-aversion scale	-0.033***	-3.672	-0.034***	-3.627	
Organ donor	0.348***	7.841	0.375***	7.542	
Donors participation rate	3.805***	4.200	4.107***	4.185	
Living area					
Outer suburbs	0.033	0.660	0.031	0.591	
Multipolar town	0.127	1.572	0.135	1.540	
Urban centre	Ref.	Ref.	Ref.	Ref.	
Rural area	0.024	0.463	0.024	0.419	
Health index (MCA)	2.038***	11.009	1.428***	2.789	
Fear of health consequences	-6.508**	-2.178	-7.239**	-2.184	

Controls

N	10132	10132

Table 3.1. Model estimates – Equation of interest

Dep. var.	Active donor (1) vs. Non-donor (0)				
	Hure	Heck	man		
Estimates	Coeff.	t-stat	Coeff.	t-stat	
Main variables					
Risk-aversion scale	-0.033***	-3.672	-0.034***	-3.627	
Organ donor	0.348***	7.841	0.375***	7.542	
Donors participation rate	3.805***	4.200	4.107***	4.185	
Living area					
Outer suburbs	0.033	0.660	0.031	0.591	
Multipolar town	0.127	1.572	0.135	1.540	
Urban centre	Ref.	Ref.	Ref.	Ref.	
Rural area	0.024	0.463	0.024	0.419	
Health index (MCA)	2.038***	11.009	1.428***	2.789	
Fear of health consequences	-6.508**	-2.178	-7.239**	-2.184	

Risk averse indiv. are less prone to give blood

Controls

N	10132	10132	

Table 3.1. Model estimates – Equation of interest

Dep. var.	Active donor (1) vs. Non-donor (0)			
	Hur	Hurdle		man
Estimates	Coeff.	t-stat	Coeff.	t-stat
Main variables				
Risk-aversion scale	-0.033***	-3.672	-0.034***	-3.627
Organ donor	0.348***	7.841	0.375***	7.542
Donors participation rate	3.805***	4.200	4.107***	4.185
Living area				
Outer suburbs	0.033	0.660	0.031	0.591
Multipolar town	0.127	1.572	0.135	1.540
Urban centre	Ref.	Ref.	Ref.	Ref.
Rural area	0.024	0.463	0.024	0.419
Health index (MCA)	2.038***	11.009	1.428***	2.789
Fear of health consequences	-6.508**	-2.178	-7.239**	-2.184

Altruistic motives = classic determinant

COHUTOIS

10132 10132

Table 3.1. Model estimates – Equation of interest

Dep. var.	Activ	ve donor (1)	vs. Non-donor	(0)	
	Hur	dle	Heck	man	•
Estimates	Coeff.	t-stat	Coeff.	t-stat	
Main variables					
Risk-aversion scale	-0.033***	-3.672	-0.034***	-3.627	
Organ donor	0.348***	7.841	0.375***	7.542	
Donors participation rate	3.805***	4.200	4.107***	4.185	Shame > Honor
Living area					(1)
Outer suburbs	0.033	0.660	0.031	0.591	/!\ Manski (1993)
Multipolar town	0.127	1.572	0.135	1.540	"Reflection problem"
Urban centre	Ref.	Ref.	Ref.	Ref.	
Rural area	0.024	0.463	0.024	0.419	
Health index (MCA)	2.038***	11.009	1.428***	2.789	
Fear of health consequences	-6.508**	-2.178	-7.239**	-2.184	
Controls					
N	10132		10132		UNIVERSITÉ

Table 3.1. Model estimates – Equation of interest

Dep. var.	Activ	ve donor (1)	r (1) vs. Non-donor (0)		
	Hur	dle	Heckman		
Estimates	Coeff.	t-stat	Coeff.	t-stat	
Main variables					
Risk-aversion scale	-0.033***	-3.672	-0.034***	-3.627	
Organ donor	0.348***	7.841	0.375***	7.542	
Donors participation rate	3.805***	4.200	4.107***	4.185	
Living area					
Outer suburbs	0.033	0.660	0.031	0.591	
Multipolar town	0.127	1.572	0.135	1.540	
Urban centre	Ref.	Ref.	Ref.	Ref.	
Rural area	0.024	0.463	0.024	0.419	
Health index (MCA)	2.038***	11.009	1.428***	2.789	
Fear of health consequences	-6.508**	-2.178	-7.239**	-2.184	

No effect of the Cost of blood donation because the EFS deploys a fleet of medical trucks everywhere

Cost as health vs. income = 1 vs. 2 arg. In U function

Controls

N	10132	10132	

Table 3.1. Model estimates – Equation of interest

Dep. var.	Activ	ve donor (1)	vs. Non-donor	(0)
	Hure	Hurdle		man
Estimates	Coeff.	t-stat	Coeff.	t-stat
Main variables				
Risk-aversion scale	-0.033***	-3.672	-0.034***	-3.627
Organ donor	0.348***	7.841	0.375***	7.542
Donors participation rate	3.805***	4.200	4.107***	4.185
Living area				
Outer suburbs	0.033	0.660	0.031	0.591
Multipolar town	0.127	1.572	0.135	1.540
Urban centre	Ref.	Ref.	Ref.	Ref.
Rural area	0.024	0.463	0.024	0.419
Health index (MCA)	2.038***	11.009	1.428***	2.789
Fear of health consequences	-6.508**	-2.178	-7.239**	-2.184

Smaller than the selection effect (hereafter)

Controls

N	10132	10132	

Table 3.1. Model estimates – Equation of interest

Dep. var.	Activ	ve donor (1)	vs. Non-donor	(0)
	Hur	dle	Heck	man
Estimates	Coeff.	t-stat	Coeff.	t-stat
Main variables				
Risk-aversion scale	-0.033***	-3.672	-0.034***	-3.627
Organ donor	0.348***	7.841	0.375***	7.542
Donors participation rate	3.805***	4.200	4.107***	4.185
Living area				
Outer suburbs	0.033	0.660	0.031	0.591
Multipolar town	0.127	1.572	0.135	1.540
Urban centre	Ref.	Ref.	Ref.	Ref.
Rural area	0.024	0.463	0.024	0.419
Health index (MCA)	2.038***	11.009	1.428***	2.789
Fear of health consequences	-6.508**	-2.178	-7.239**	-2.184

Display the expected signs

Controls

N	10132	10132	

Table 3.2. Model estimates – Selection equation

Dep. var.	Qualif	ied (1) vs. D	isqualified don	or (0)
	Hur	dle	Heckman	
Estimates	Coeff.	t-stat	Coeff.	t-stat
Main variables				
Organ donor	-0.069**	-2.346	-0.072**	-2.422
Vaccine <10 years	-0.068**	-2.232	-0.064**	-1.977
Body mass index				
Underweight	0.048	0.596	0.031	0.357
Normal	Ref.	Ref.	Ref.	Ref.
Overweight	-0.060*	-1.837	-0.059*	-1.783
Obese	-0.198***	-4.688	-0.205***	-4.676
Missing data	-0.060	-0.595	-0.060	-0.591
Health index (MCA)	4.328***	37.424	4.345***	37.323
Controls				
N	10132		10132	
Chi2	0.979		2.066	

Table 3.2. Model estimates – Selection equation

Dep. var.	Qualif	ied (1) vs. D	isqualified don	or (0)
	Hur	dle	Heck	man
Estimates	Coeff.	t-stat	Coeff.	t-stat
Main variables				
Organ donor	-0.069**	-2.346	-0.072**	-2.422
Vaccine <10 years	-0.068**	-2.232	-0.064**	-1.977
Body mass index				
Underweight	0.048	0.596	0.031	0.357
Normal	Ref.	Ref.	Ref.	Ref.
Overweight	-0.060*	-1.837	-0.059*	-1.783
Obese	-0.198***	-4.688	-0.205***	-4.676
Missing data	-0.060	-0.595	-0.060	-0.591
Health index (MCA)	4.328***	37.424	4.345***	37.323
Controls				
\overline{N}	10132		10132	
Chi2	0.979		2.066	

Organ donors + Vaccine

- = Altruistic motives
- = Substitution effect

Table 3.2. Model estimates – Selection equation

Dep. var.	Qualif	ied (1) vs. D	isqualified don	or (0)
	Hurdle		Heck	man
Estimates	Coeff.	t-stat	Coeff.	t-stat
Main variables				
Organ donor	-0.069**	-2.346	-0.072**	-2.422
Vaccine <10 years	-0.068**	-2.232	-0.064**	-1.977
Body mass index				
Underweight	0.048	0.596	0.031	0.357
Normal	Ref.	Ref.	Ref.	Ref.
Overweight	-0.060*	-1.837	-0.059*	-1.783
Obese	-0.198***	-4.688	-0.205***	-4.676
Missing data	-0.060	-0.595	-0.060	-0.591
Health index (MCA)	4.328***	37.424	4.345***	37.323

Health is the main exclusion criteria

Controls

N	10132	10132	
Chi2	0.979	2.066	

Table 3.2. Model estimates – Selection equation

Qualified (1) vs. Disqualified donor (0)			
Hurdle		Heckman	
Coeff.	t-stat	Coeff.	t-stat
-0.069**	-2.346	-0.072**	-2.422
-0.068**	-2.232	-0.064**	-1.977
0.048	0.596	0.031	0.357
Ref.	Ref.	Ref.	Ref.
-0.060*	-1.837	-0.059*	-1.783
-0.198***	-4.688	-0.205***	-4.676
-0.060	-0.595	-0.060	-0.591
4.328***	37.424	4.345***	37.323
	Coeff. -0.069** -0.068** 0.048 Ref0.060* -0.198*** -0.060	Coeff. t-stat -0.069** -2.346 -0.068** -2.232 0.048	Coeff. t-stat Coeff. -0.069** -2.346 -0.072** -0.068** -2.232 -0.064** 0.048 0.596 0.031 Ref. Ref. Ref. -0.060* -1.837 -0.059* -0.198*** -4.688 -0.205*** -0.060 -0.595 -0.060

Higher than the effect on the decision to give

Controls

N	10132	10132	
Chi2	0.979	2.066	

Table 3.2. Model estimates – Selection equation

Huro	dle	Hoole	
C_{22} ff		Heckman	
Coeff.	t-stat	Coeff.	t-stat
-0.069**	-2.346	-0.072**	-2.422
-0.068**	-2.232	-0.064**	-1.977
0.048	0.596	0.031	0.357
Ref.	Ref.	Ref.	Ref.
-0.060*	-1.837	-0.059*	-1.783
-0.198***	-4.688	-0.205***	-4.676
-0.060	-0.595	-0.060	-0.591
4.328***	37.424	4.345***	37.323
10132		10132	
0.979		2.066	
	-0.069** -0.068** 0.048 Ref0.060* -0.198*** -0.060 4.328***	-0.069** -2.346 -0.068** -2.232 0.048	-0.069** -2.346 -0.072** -0.068** -2.232 -0.064** 0.048

Support for the Hurdle Model: -Diff coeff. in Eq1-Eq2

-Chi2 < Critical value

Conclusion

- Main findings (stemming from theory and econometrics)
 - Risk averse individuals are less prone to give their blood
 - Rejoinder with the internat. litt. on the effect of preferences on blood donation
 - Stigma consideration (shame) dominate honor as a motive for blood donation
 - New interpretation (intrinsic motivations) for cross-area comparisons in blood donors rate
 - Altruism (pure + impure) increased the probability of donating blood
 - Rather innovative result = the substitution effects for disqualified donors
- Main strength/limit
 - Tight linkage between theory and empirics
 - May be difficult to tie all the knots, but provides new insights

Conclusion

Discussion

- Theoretical model
 - Additive vs. multiplicative risk + 1 vs. 2 arguments (cost) in the U. function => similar results
 - Alternative model: health capital model with time preferences (Becker et Murphy, 1988)
- Identification issues
 - Endogeneity of preferences (risk aversion) goes beyond the scope of the model
 - The "net reputational gain" caused by a third factor (Mansky, 1993) → secondary concern...
- Follow-up
 - Field experiment (RCT) with the French National Blood Service (EFS) & IRDES
 - O Why primo donors do give blood only once?
 - Anticipations vs. deception (ex-ante realistic anticipations + ex-post feed-back session)

THANK YOU!

LET'S KEEP IN TOUCH:

nicolas.sirven@parisdescartes.fr