## Competitive Advertising and Pricing

Raphael Boleslavsky Ilwoo Hwang Kyungmin (Teddy) Kim University of Miami

November 2018

◆□▶ ◆□▶ ◆三▶ ◆三▶ - 三 - のへぐ

# Raphael Boleslavsky and Ilwoo Hwang





・ロト ・ 日 ・ ・ ヨ ・

э

# This Paper

- Bertrand competition for differentiated products
  - Perloff and Salop (1985)
  - *n* firms with horizontally differentiated products
  - $v_i \sim F$ : i.i.d. across consumers and products
  - Consumer purchases *i* if  $v_i p_i > v_j p_j$ ,  $\forall j \neq i$
  - Demand for product i:

$$D(p_i, p^*) = Pr\{v_i - p_i > v_j - p^*\} = \int F(v_i - p_i + p^*)^{n-1} dF(v_i).$$

- Each firm solves  $\max_{p_i} D(p_i, p^*)p_i$ .
- (Informative) Strategic advertising
  - · Each firm decides how much product information to provide.
  - No structural assumption on advertising
  - Seller can choose any mean-preserving contraction G of F
    - No info:  $G = \delta_{\mu_F}$ , Full info: G = F, Cutoff...
  - A way to endogenize F in Perloff and Salop

## **Research Questions**

1 Advertising content under competition

- Monopoly: pool all values above MC, extract all surplus
- How competition shapes advertising content?
- More information as *n* increases?
- 2 Effects of strategic advertising on price (welfare)
  - Full information vs. equilibrium information
  - Economic effects of disclosure policies
- 3 Interaction between pricing and advertising
  - How to adjust advertising strategy as p<sub>i</sub> varies?

## Most Related Literature

- Classical studies on advertising, product differentiation
- Under structural assumptions
  - Monopoly: Lewis, Sappington (1994), Johnson, Myatt (2006), Anderson and Renault (2006)...
  - Competition: Ivanov (2013)
- Advertising-only game (competitive Bayesian persuasion)
  - Boleslavsky, Cotton (2015, 2018): binary types
  - Au, Kawai (2017): finite types
- Entry game: Boleslavsky, Cotton, Gurnani (2017)
  - New (innovative) firm vs. old (established) firm
  - Binary types, and demonstrations before/after pricing
- Optimal information design with continuous state space
  - Kolotilin (2017), Dworczak, Martini (2018)

# The Model

- *n* sellers with zero MC
- A unit mass of risk-neutral consumers
- Each consumer's (true, underlying) value for *i* 
  - $v_i \sim F[\underline{v}, \overline{v}]$ : i.i.d. across consumers and products
  - $\underline{v} = -\infty$ ,  $\overline{v} = \infty$  allowed
  - F has continuous and positive density f
- Each seller chooses G<sub>i</sub> (advertising) and p<sub>i</sub>
  - $G_i$ : distribution over conditional expectations E[v|s]
  - G<sub>i</sub>: feasible iff mean-preserving contraction of F
- Each (risk-neutral) consumer purchases *i* if

$$v_i - p_i > v_j - p_j, \forall j \neq i,$$

where  $v_j \sim G_j$  for all j.

### Symmetric Pure-Price Equilibrium

•  $(p^*, G)$  is a (symmetric pure-price) equilibrium if  $(p^*, G) \in argmax_{p_i, G_i}D(p_i, G_i, p^*, G)p_i$ 

s.t.  $G_i$  is a mean-preserving contraction of F, where

$$D(p_i, G_i, p^*, G) = Pr\{v_i - p_i > v_j - p^*, \forall j \neq i\}$$
  
=  $\int G(v_i - p_i + p^*)^{n-1} dG_i(v_i)$ 

## Roadmap

### 1 Characterize equilibrium advertising strategy

- Given  $p_i = p^*$ , find G that is best response to  $G^{n-1}$
- "Advertising-only game"
- 2 Characterize equilibrium price
  - Given G, find  $p^*$  that is a best response to  $p^*$
- 8 Equilibrium existence
  - Consider all compound deviations  $(p_i, G_i)$  from  $(p^*, G)$

# Equilibrium Advertising

#### Theorem

### Let $G^*$ be a (unique) MPC of F such that

(i)  $(G^*)^{n-1}$  is convex over its support and

(ii) for some partition  $\{\overline{v}_0^* \equiv \underline{v}, \underline{v}_1^*, \overline{v}_1^*, ..., \underline{v}_m^*, \overline{v}_m^*, \underline{v}_{m+1}^*\}$ ,

•  $G^*[\underline{v}_k, \overline{v}_k]$  is MPC of  $F[\underline{v}_k, \overline{v}_k]$  with linear  $(G^*)^{n-1}$  and

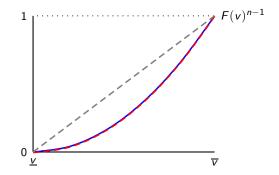
• 
$$G^*(v) = F(v)$$
 if  $v \in (\overline{v}_k, \underline{v}_{k+1})$ .

The advertising-only game has a unique symmetric equilibrium in which each firm advertises according to  $G^*$ .

▲日▼ ▲□▼ ▲ □▼ ▲ □▼ ■ ● ● ●

# Example 1: $F^{n-1}$ convex (increasing density)

•  $G^* = F$ : product information fully provided



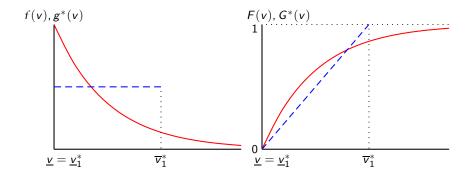
- 4 同 2 4 日 2 4 日 2 4

э

- Disperse v's as much as possible
- MPC constraint binds.

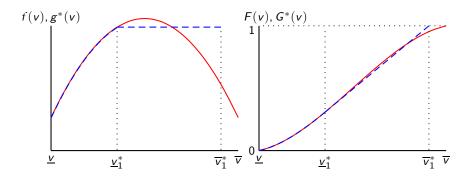
Example 2:  $F^{n-1}$  concave (decreasing density)

- Occur only when n = 2
- If  $\underline{v} = 0$ , then  $G^* = U[0, 2\mu_F]$



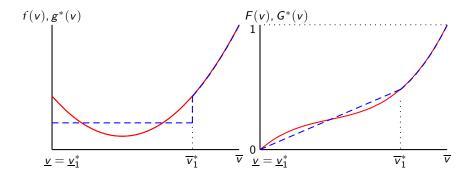
- If  $G_j = F$ , then  $G_i = \delta_{\mu_F}$ . But then,  $G_j = F$  not optimal...
- $G_j$  linear  $\Rightarrow$  neither dispersion nor contraction profitable

# Example 3: $F^{n-1}$ convex-concave (single-peaked density)



▲ロ > ▲ @ > ▲ 注 > ▲ 注 > → 注 → の < @

Example 4:  $F^{n-1}$  concave-convex (*U*-shaped density)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 の々ぐ

### Intuition for Theorem 1

# (G\*)<sup>n-1</sup> convex If G<sub>j</sub> not convex at v ∈ supp(G<sub>j</sub>), then G<sub>i</sub> puts mass on v. Then, v ∉ supp(G<sub>j</sub>).

- 2 Either  $(G^*)^{n-1}$  linear or  $G^* = F$ 
  - Since  $G^*$  is a MPC of F and  $(G^*)^{n-1}$  convex,

$$\int (G^*)^{n-1} dG^* \leq \int (G^*)^{n-1} dF.$$

- This must hold with equality:  $o/w F \succ G^*$
- Either  $G^* = F$  or  $(G^*)^{n-1}$  linear (risk neutral)

(\*) The second needs modification if  $supp(G^*) \neq supp(F)$ .

# Competition Intensity on Advertising Content

### Proposition

As  $n \to \infty$ ,  $G^*$  converges to F.

### Proof.

•  $F^{n-1}$  becomes more convex as n increases:

$$(F^{n-1})'' = (n-1)((n-2)F^{n-3}f^2 + F^{n-1}f').$$

- As n → ∞, making a few loyal consumers becomes more important.
- Ivanov (2013)
  - Identical economic result based on *rotation order* by Johnson and Myatt (2006)

## Equilibrium Price

• Optimal pricing: Since 
$$\pi_i = D_i p_i$$
,

(F.O.C) 
$$D_i + \frac{\partial D_i}{\partial p_i} p_i = 0 \Rightarrow p_i = \frac{D_i}{-\partial D_i / \partial p_i}.$$

• In symmetric equilibrium,  $D_i = 1/n$ , and thus

$$p^* = \frac{1}{n(n-1)\int (G^*)^{n-2}g^*dG^*}.$$

• Under full information (i.e.,  $G_i = F$ ),

$$p^F = \frac{1}{n(n-1)\int F^{n-2}fdF}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 < @</p>

Strategic Advertising vs. Full Information

- Intuitively,  $p^* \leq p^F$ 
  - *p* > 0 because of preference diversity (product differentiation)
  - G\* is a MPC of (so less dispersed than) F
- How to measure preference diversity?
  - Perloff and Salop (1985): MPS (SOSD) not work in general
  - Zhou (2017), Choi, Dai, Kim (2018): dispersive order works!

- $G^*$  and F not ranked in dispersive order
  - Zhou and CDK not apply
- *G*<sup>\*</sup> is a particular type of MPC of *F* 
  - PS not apply either

### Strategic Advertising vs. Full Information

**1** Exponential:  $F(v) = 1 - e^{-\lambda v}$ 

- Well-known that  $p^F = 1/\lambda$ , independent of n
- $G^*(v) = F(v)$  until  $v^*(> 0)$ , then  $(G^*)^{n-1}$  linear, but...

$$p^*=rac{1}{\lambda}, \forall n\geq 2.$$

- 2 Duopoly: n = 2,  $\mu_F = 1$ ,  $G^* = U[0, 2] \Rightarrow p^* = 1$ 
  - Dec. linear density:  $f(v) = b av \Rightarrow p_{-}^{F} > 1$
  - Half-normal, truncated exponential  $\Rightarrow p^F > 1$
  - U-shaped density symmetric around  $\mu_F = 1 \Rightarrow p^F < 1$

### Strategic Advertising vs. Full Information

$$p^* = \frac{1}{2\int g^* dG^*} = \frac{1}{2\int (g^*)^2 dv}.$$

• Under full information (i.e.,  $G_i = F$ ),

$$p^F = \frac{1}{2\int f^2 dv}$$

• When n = 2,

$$p^F \ge p^* \Leftrightarrow \int f^2 dv \le \int (g^*)^2 dv.$$

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ の < @

### Two Effects of Mean-Preserving Contraction

Support effect

• Combine  $f(v_1)$  and  $f(v_2)$  into one

$$(f(v_1) + f(v_2))^2 > f(v_1)^2 + f(v_2)^2$$

- Always  $\uparrow$
- Marginal effect
  - Let  $v_1 < v_3 < v_4 < v_2$ , and  $f_i = f(v_i), \forall i$
  - $f_1 d$ ,  $f_3 + d$ ,  $f_4 + d$ ,  $f_2 d$

$$(f_1 - d)^2 + (f_3 + d)^2 + (f_4 + d)^2 + (f_2 - d)^2 - \sum f_i^2$$
  
=  $2d [(f_3 + f_4) - (f_1 + f_2)] > 0 \text{ iff } f_3 + f_4 > f_1 + f_2.$ 

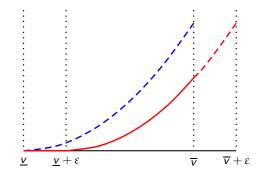
•  $\uparrow$  if  $f \cap$ -shaped, while  $\downarrow$  if  $f \cup$ -shaped

### **Compound Deviations**

- So far, only simple deviations
  - $G^*$  only by considering  $G_i \neq G^*$ , while fixing  $p_i = p^*$ .
  - $p^*$  only by considering  $p_i \neq p^*$ , while fixing  $G_i = G^*$ .
- Compound deviations:  $p_i \neq p^*$  and  $G_i \neq G^*$ 
  - How a firm's advertising and pricing decisions interact each other.
  - $(p^*, G^*)$  is an equilibrium if and only if no  $(p_i, G_i)$  is profitable.

- Our strategy: for each  $p_i$ , identify optimal  $G_i^*$ .
  - $(p^*, G^*)$  is an equilibrium iff no  $(p_i, G_i^*)$  is profitable.
  - Today, only the case where  $G^* = F$

# When $p_i$ is larger than $p^*$



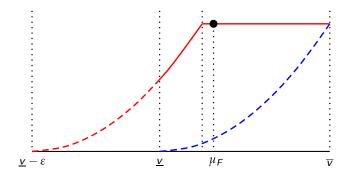
・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

- E

• 
$$\varepsilon \equiv p_i - p^*$$

- $G^*(v p_i + p^*)^{n-1}$  is convex over  $[\underline{v}, \overline{v}]$ .
- Therefore,  $G_i^* = F$ .

When  $p_i$  is sufficiently smaller than  $p^*$ 

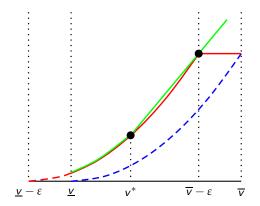


・ロト ・聞ト ・ヨト ・ヨト

э

- $\varepsilon \equiv p^* p_i$
- No information is optimal:  $G_i^* = \delta_{\mu_F}$

## When $p_i$ is slightly smaller than $p^*$



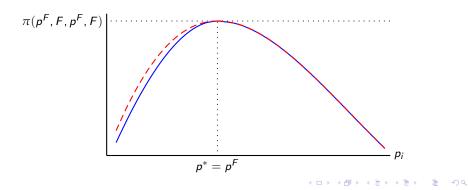
ε ≡ p\* - p<sub>i</sub>
G<sub>i</sub>\* = F if v ≤ v\* and then put all remaining mass on v - ε.

# Existence of Full Information Equilibrium

• 
$$G^* = G_i^* = F$$
 if  $p_i \ge p^* = p^F$ .

•  $G_i^* \neq G^* = F$  if  $p_i < p^*$ .

- Relative to the full info benchmark where  $G_i = F$  always,
  - upward deviation  $(p_i > p^F)$  is equally profitable, while
  - downward deviation  $(p_i < p^F)$  is more profitable.
- Need stronger condition for equilibrium existence than in Perloff and Salop.



# Conclusion

1 Bertrand competition with strategic advertising

- Endogenous F in the Perloff-Salop model
- **2** Competitive advertising (information disclosure)
  - With continuous underlying distributions (F)
  - Look for G<sup>\*</sup>!
    - $(G^*)^{n-1}$  is convex and linear unless  $G^*(v) = F(V)$

- More competition  $\Rightarrow$  more informative advertising
- 3 Effects of advertising on price
  - $p^*$  may or may not be smaller than  $p^F$ .
  - Stricter disclosure requirements may not help.
- 4 Effects of pricing on advertising
  - Optimal advertising strategy depends on p<sub>i</sub>