Preliminaries Results Conclusion

# Ambiguous Persuasion by D. Beauchêne, J. Li, and M. Li

Maxim Ivanov

McMaster

November 2018

Ivanov (McMaster)

# Preliminaries

- Consider communication between a sender and receiver
- ullet Both players hold prior belief  $p_0$  about an unknown state  $\omega$
- The sender selects a signal structure  $\pi\left(m|\omega
  ight)$  that provides information in message m about  $\omega$
- Upon observing *m*, the receiver takes an action *a*, which affects players' payoffs
- The sender selects the signal structure, which maximizes her ex-ante payoff

#### Preliminaries

- Suppose first that both players are Bayesian (Kamenica and Gentzkow, 2011)
- Each message *m* induces a Bayesian posterior belief

$$p = p(m) = \Pr(\omega|m) = \frac{p_0(\omega) \pi(m|\omega)}{\tau(m)}$$

• The receiver takes an action that maximizes his posterior payoff

$$a = \hat{a}(p) \in \operatorname*{arg\,max}_{a \in A} E_{p}\left[U(a, \omega)
ight]_{a \in A}$$

• Both p and  $\hat{a}(p)$  result in the sender's *posterior payoff* 

$$V\left( p
ight) =E_{p}\left[ v\left( \hat{a}\left( p
ight) ,\omega
ight) 
ight]$$

#### Preliminaries

• Any distribution of posterior beliefs  $\{ au\left(m
ight), p\left(m
ight)\}$  must be Bayes plausible

$$E_{\tau}\left[p\left(m\right)\right]=p_{0}.$$

• The *optimal* distribution { $\tau^{*}(m)$ ,  $p^{*}(m)$ } provides the ex-ante payoff  $\bar{V}(p_{0})$ , where

$$ar{V}\left( p
ight) =\sup\left\{ z|\left( p,z
ight) \in co\left( V\left( p
ight) 
ight) 
ight\}$$

is the concave closure of V(p).

• The persuasion is valuable if  $ar{V}\left( p_{0}
ight) >V\left( p_{0}
ight)$ 

# Preliminaries: ambiguous signal structures

- Suppose the sender adds another signal structure  $\pi'\left(m|\omega\right)$  and randomizes between  $\pi$  and  $\pi'$ 
  - the receiver is uninformed whether a message m is sent by  $\pi$  or  $\pi'$
- Randomization does *not* benefit the sender
- A convex combination of signal structures is an (ambiguous) signal structure

$$\pi'' = \alpha \pi + (1 - \alpha) \pi'$$

Main question

# What is the value of ambiguous persuasion if both players have maxmin preferences?

# Model: maxmin preferences

• Upon receiving a message *m*, the receiver builds the *set* of Bayesian posteriors  $P_m$  for all signal structures  $\{\pi_k\}_{k=1}^{K}$  in the ambiguous device

$$P_{m} = \left\{ p_{m}^{k} | p_{m}^{k} = \frac{p_{0}(\omega) \pi_{k}(m|\omega)}{\tau_{k}(m)} \right\}$$

and takes an action

$$\hat{a}(P_m) \in \arg\max_{a} \min_{p_m^k \in P_m} E_{p_k}[U(a, \omega)]$$

• Similarly, the sender has maxmin preferences. Given a set of signal structures  $\{\pi_k\}_{k=1}^N$  in the ambiguous device, his ex-ante payoff is

$$EV = \min_{k} E_{\tau_{k}} E_{p_{m}^{k}} \left[ v \left( \hat{a} \left( P_{m} \right), \omega \right) \right]$$

# Key trade-off

- For maxmin preferences, adding an extra signal structure  $\pi'$  makes a difference
- On one side, the sender can be **hurt** by  $\pi'$ :
  - if  $\hat{a}\left(\textit{P}_{m}\right)$  is unaffected by  $\pi'$  , the sender's ex-ante payoff can only decrease

$$EV = \min_{k} E_{\tau_{k}} E_{p_{m}^{k}} \left[ v \left( \hat{a} \left( P_{m} \right), \omega \right) \right]$$

- On the other side, the sender can **benefit** from  $\pi'$ :
  - $\pi'$  affects the set of Bayesian posteriors  $P_m$
  - a modified  $P_m$  can result in the more favorable actions  $\hat{a}(P_m)$  for some message
  - this can potentially increase the sender's ex-ante payoff

# The value of ambiguous persuasion

- Main result 1: the paper provides the maximum ex-ante payoff *EV* of the sender across all ambiguous signal structures
- EV has a clear geometric meaning

#### The value of ambiguous persuasion

Consider the sender's posterior payoff

$$v\left( {m p}, {m P}_{-1} 
ight) = {m E}_{m p}\left[ {m v}\left( {\hat {m a}}\left( {m P} 
ight), \omega 
ight) 
ight]$$
 , where  ${m P} = {m p} \cup {m P}_{-1}$ 

for a given posterior belief p and a set of K - 1 posterior beliefs  $P_{-1}$ .

• Denote  $V(p, P_{-1})$  the concave closure of  $v(p, P_{-1})$ 

$$V\left( \mathit{p}, \mathit{P}_{-1} 
ight) = \sup \left\{ z \in \mathbb{R} | \left( \mathit{P}, z 
ight) \in \mathit{co}\left( v\left( \mathit{p}, \mathit{P}_{-1} 
ight) 
ight) 
ight\}$$

• Let  $\bar{V}(p)$  be max projection of  $V(p, P_{-1})$  on a single dimension of beliefs

$$ar{V}\left( p
ight) =\max_{egin{smallmatrix} P_{-1}\in\left( \Delta\Omega
ight) ^{K-1}}V\left( p,P_{-1}
ight) .$$

ullet Then, the sender's maximum ex-ante payoff is  $ar{V}\left( p_{0}
ight)$ 

# The value of ambiguous persuasion: leading example

- Two states:  $\omega_I, \omega_h$
- Prior belief:  $p_0 = \Pr \{ \omega_h \} = \frac{1}{2}$
- Sender's preferences:  $v(a_h) > v(a_m) > v(a_l)$
- Receiver's preferences:
  - *a*<sub>*l*</sub>, *a*<sub>*h*</sub> are risky
  - *a<sub>m</sub>* is safe

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

#### The value of ambiguous persuasion: leading example



•  $\pi_1 \to p(m_l) = 0, p(m_h) = 3/4; \ \pi_2 \to p(m_l) = 1/4, p(m_h) = 3/4$ 

• Suppose the sender uses the ambiguous device:  $\{\pi_1, \pi_2\}$ 

- Good news:  $\hat{a}(m_l) = \hat{a}(0, 1/4) = \hat{a}(1/4) = a_m$
- Bad news:  $EV = \min \{ EV(\pi_1), EV(\pi_2) \} = \min \{ 2/3, 1/2 \} = 1/2$

#### Tool: synonyms

- Thus, EV can potentially achieve 2/3
- This requires modifying signal structures. How?
- A solution: using synonyms
  - (Strong synonyms) messages m and  $m^\prime$  induce identical sets of posterior beliefs  $P_m=P_{m^\prime}$
  - (Weak synonyms) messages m and m' induce identical receiver's actions  $\hat{a}\left(P_m\right)=\hat{a}\left(P_{m'}\right)$

# Synonyms



- $\pi'_1 = \alpha \pi_1 \oplus (1-\alpha) \pi_2$ ,  $\pi'_2 = (1-\alpha) \pi_2 \oplus \alpha \pi_1$
- Naturally,  $EV\left(\pi_{i}^{\prime}
  ight)=lpha EV\left(\pi_{1}
  ight)+\left(1-lpha
  ight)EV\left(\pi_{2}
  ight)$
- $P_{m_l} = P_{m_l'} = \{0, 1/4\}$ ,  $P_{m_h} = P_{m_h'} = \{3/4, 3/4\}$ ,
- As  $\alpha \to 1$ , both  $\pi_1' \to \pi_1$  and  $\pi_2' \to \pi_1$ .
- Hence, min  $\{EV(\pi_1'), EV(\pi_2')\} \rightarrow EV(\pi_1) = 2/3$

# Synonyms are necessary

- Main result 2: If optimal ambiguous persuasion is valuable, then weak synonyms are *necessary* 
  - Intuitively, synonyms are needed to hedge against low-payoff signal structures
  - They preserve the desired sets of posteriors (or receiver's actions) across messages
- How many signal structures are needed for the optimal ambiguous persuasion? Only two.

# Conclusion

- The paper provides the sharp characterization of optimal persuasion with maxmin preferences of players
- It provides the necessary and sufficient tools for the solution
- It demonstrates how synonyms and ambiguity in messages appear endogenously in communication
- Ideas are clear and intuitive *ex-post*, but (very) non-trivial *ex-ante*

(ロ) (回) (三) (三)

- The paper provides the sharp characterization of optimal persuasion with maxmin preferences of players
- It provides the necessary and sufficient tools for the solution
- It demonstrates how synonyms and ambiguity in messages appear endogenously in communication
- Ideas are clear and intuitive *ex-post*, but (very) non-trivial *ex-ante*

- The paper provides the sharp characterization of optimal persuasion with maxmin preferences of players
- It provides the necessary and sufficient tools for the solution
- It demonstrates how synonyms and ambiguity in messages appear endogenously in communication
- Ideas are clear and intuitive *ex-post*, but (very) non-trivial *ex-ante*

- The paper provides the sharp characterization of optimal persuasion with maxmin preferences of players
- It provides the necessary and sufficient tools for the solution
- It demonstrates how synonyms and ambiguity in messages appear endogenously in communication
- Ideas are clear and intuitive ex-post, but (very) non-trivial ex-ante

- Ambiguous persuasion is more effective than Bayesian persuasion, but it is more complicated
- It requires more complicated signal structures and a bigger message space (as dictated by maxmin preferences of the sender)
  - this problem can be relaxed in the case of the Bayesian sender
- It requires randomizing among signal structures (as dictated by maxmin preferences of the receiver)
  - An ambiguous device is a mixture over signal structures. It is an element in

$$\Delta \pi = \Delta \left( \Delta p \right) = \Delta \left( \Delta \left( \Delta \Omega \right) \right)$$

- Ambiguous persuasion is more effective than Bayesian persuasion, but it is more complicated
- It requires more complicated signal structures and a bigger message space (as dictated by maxmin preferences of the sender)
  - this problem can be relaxed in the case of the Bayesian sender
- It requires randomizing among signal structures (as dictated by maxmin preferences of the receiver)
  - An ambiguous device is a mixture over signal structures. It is an element in

$$\Delta \pi = \Delta \left( \Delta p \right) = \Delta \left( \Delta \left( \Delta \Omega \right) \right)$$

- Ambiguous persuasion is more effective than Bayesian persuasion, but it is more complicated
- It requires more complicated signal structures and a bigger message space (as dictated by maxmin preferences of the sender)
  - this problem can be relaxed in the case of the Bayesian sender
- It requires randomizing among signal structures (as dictated by maxmin preferences of the receiver)
  - An ambiguous device is a mixture over signal structures. It is an element in

$$\Delta \pi = \Delta \left( \Delta \mathbf{p} \right) = \Delta \left( \Delta \left( \Delta \Omega \right) \right)$$

#### • How to implement ambiguous devices in practice?

• If the marginal cost of implementation is *C*, is it lower than the marginal benefit of ambiguous persuasion:

$$\bar{V}(p_0) - V(p_0) \geq C$$

• What can be achieved with simple signal structures, say, deterministic ones?

- How to implement ambiguous devices in practice?
- If the marginal cost of implementation is *C*, is it lower than the marginal benefit of ambiguous persuasion:

$$\bar{V}\left(p_{0}
ight)-V\left(p_{0}
ight)\gtrless C$$

• What can be achieved with simple signal structures, say, deterministic ones?

- How to implement ambiguous devices in practice?
- If the marginal cost of implementation is *C*, is it lower than the marginal benefit of ambiguous persuasion:

$$\bar{V}(p_0) - V(p_0) \gtrless C$$

• What can be achieved with simple signal structures, say, deterministic ones?