by D. Beauchêne, J. Li, and M. Li

Maxim Ivanov

McMaster

November 2018

Preliminaries

- Consider communication between a sender and receiver
- Both players hold prior belief p_{0} about an unknown state ω
- The sender selects a signal structure $\pi(m \mid \omega)$ that provides information in message m about ω
- Upon observing m, the receiver takes an action a, which affects players' payoffs
- The sender selects the signal structure, which maximizes her ex-ante payoff

Preliminaries

- Suppose first that both players are Bayesian (Kamenica and Gentzkow, 2011)
- Each message m induces a Bayesian posterior belief

$$
p=p(m)=\operatorname{Pr}(\omega \mid m)=\frac{p_{0}(\omega) \pi(m \mid \omega)}{\tau(m)}
$$

- The receiver takes an action that maximizes his posterior payoff

$$
a=\hat{a}(p) \in \underset{a \in A}{\arg \max } E_{p}[U(a, \omega)]
$$

- Both p and $\hat{a}(p)$ result in the sender's posterior payoff

$$
V(p)=E_{p}[v(\hat{a}(p), \omega)]
$$

Preliminaries

- Any distribution of posterior beliefs $\{\tau(m), p(m)\}$ must be Bayes plausible

$$
E_{\tau}[p(m)]=p_{0} .
$$

- The optimal distribution $\left\{\tau^{*}(m), p^{*}(m)\right\}$ provides the ex-ante payoff $\bar{V}\left(p_{0}\right)$, where

$$
\bar{V}(p)=\sup \{z \mid(p, z) \in \operatorname{co}(V(p))\}
$$

is the concave closure of $V(p)$.

- The persuasion is valuable if $\bar{V}\left(p_{0}\right)>V\left(p_{0}\right)$

Preliminaries: ambiguous signal structures

- Suppose the sender adds another signal structure $\pi^{\prime}(m \mid \omega)$ and randomizes between π and π^{\prime}
- the receiver is uninformed whether a message m is sent by π or π^{\prime}
- Randomization does not benefit the sender
- A convex combination of signal structures is an (ambiguous) signal structure

$$
\pi^{\prime \prime}=\alpha \pi+(1-\alpha) \pi^{\prime}
$$

Main question

What is the value of ambiguous persuasion if both players have maxmin preferences?

Model: maxmin preferences

- Upon receiving a message m, the receiver builds the set of Bayesian posteriors P_{m} for all signal structures $\left\{\pi_{k}\right\}_{k=1}^{K}$ in the ambiguous device

$$
P_{m}=\left\{p_{m}^{k} \left\lvert\, p_{m}^{k}=\frac{p_{0}(\omega) \pi_{k}(m \mid \omega)}{\tau_{k}(m)}\right.\right\}
$$

and takes an action

$$
\hat{a}\left(P_{m}\right) \in \arg \max _{a} \min _{p_{m}^{k} \in P_{m}} E_{p_{k}}[U(a, \omega)]
$$

- Similarly, the sender has maxmin preferences. Given a set of signal structures $\left\{\pi_{k}\right\}_{k=1}^{N}$ in the ambiguous device, his ex-ante payoff is

$$
E V=\min _{k} E_{\tau_{k}} E_{p_{m}^{k}}\left[v\left(\hat{a}\left(P_{m}\right), \omega\right)\right]
$$

Key trade-off

- For maxmin preferences, adding an extra signal structure π^{\prime} makes a difference
- On one side, the sender can be hurt by π^{\prime} :
- if $\hat{a}\left(P_{m}\right)$ is unaffected by π^{\prime}, the sender's ex-ante payoff can only decrease

$$
E V=\min _{k} E_{\tau_{k}} E_{p_{m}^{k}}\left[v\left(\hat{a}\left(P_{m}\right), \omega\right)\right]
$$

- On the other side, the sender can benefit from π^{\prime} :
- π^{\prime} affects the set of Bayesian posteriors P_{m}
- a modified P_{m} can result in the more favorable actions $\hat{a}\left(P_{m}\right)$ for some message
- this can potentially increase the sender's ex-ante payoff

The value of ambiguous persuasion

- Main result 1: the paper provides the maximum ex-ante payoff EV of the sender across all ambiguous signal structures
- EV has a clear geometric meaning

The value of ambiguous persuasion

- Consider the sender's posterior payoff

$$
v\left(p, P_{-1}\right)=E_{p}[v(\hat{a}(P), \omega)], \text { where } P=p \cup P_{-1}
$$

for a given posterior belief p and a set of $K-1$ posterior beliefs P_{-1}.

- Denote $V\left(p, P_{-1}\right)$ the concave closure of $v\left(p, P_{-1}\right)$

$$
V\left(p, P_{-1}\right)=\sup \left\{z \in \mathbb{R} \mid(P, z) \in \operatorname{co}\left(v\left(p, P_{-1}\right)\right)\right\}
$$

- Let $\bar{V}(p)$ be max projection of $V\left(p, P_{-1}\right)$ on a single dimension of beliefs

$$
\bar{V}(p)=\max _{P_{-1} \in(\Delta \Omega)^{K-1}} V\left(p, P_{-1}\right) .
$$

- Then, the sender's maximum ex-ante payoff is $\bar{V}\left(p_{0}\right)$

The value of ambiguous persuasion: leading example

$$
\begin{array}{lll}
& \omega_{l} & \omega_{h} \\
a_{l} & -1,3 & -1,-1 \\
a_{m} & 0,2 & 0,2 \\
a_{h} & 1,-1 & 1,3
\end{array}
$$

- Two states: ω_{l}, ω_{h}
- Prior belief: $p_{0}=\operatorname{Pr}\left\{\omega_{h}\right\}=\frac{1}{2}$
- Sender's preferences: $v\left(a_{h}\right)>v\left(a_{m}\right)>v\left(a_{l}\right)$
- Receiver's preferences:
- a_{l}, a_{h} are risky
- a_{m} is safe

The value of ambiguous persuasion: leading example

- $\pi_{1} \rightarrow p\left(m_{l}\right)=0, p\left(m_{h}\right)=3 / 4 ; \pi_{2} \rightarrow p\left(m_{l}\right)=1 / 4, p\left(m_{h}\right)=3 / 4$
- Suppose the sender uses the ambiguous device: $\left\{\pi_{1}, \pi_{2}\right\}$
- Good news: $\hat{a}\left(m_{l}\right)=\hat{a}(0,1 / 4)=\hat{a}(1 / 4)=a_{m}$
- Bad news: $E V=\min \left\{E V\left(\pi_{1}\right), E V\left(\pi_{2}\right)\right\}=\min \{2 / 3,1 / 2\}=1 / 2$

Tool: synonyms

- Thus, EV can potentially achieve $2 / 3$
- This requires modifying signal structures. How?
- A solution: using synonyms
- (Strong synonyms) messages m and m^{\prime} induce identical sets of posterior beliefs $P_{m}=P_{m^{\prime}}$
- (Weak synonyms) messages m and m^{\prime} induce identical receiver's actions $\hat{a}\left(P_{m}\right)=\hat{a}\left(P_{m^{\prime}}\right)$

Synonyms

- $\pi_{1}^{\prime}=\alpha \pi_{1} \oplus(1-\alpha) \pi_{2}, \pi_{2}^{\prime}=(1-\alpha) \pi_{2} \oplus \alpha \pi_{1}$
- Naturally, $E V\left(\pi_{i}^{\prime}\right)=\alpha E V\left(\pi_{1}\right)+(1-\alpha) E V\left(\pi_{2}\right)$
- $P_{m_{l}}=P_{m_{l}^{\prime}}=\{0,1 / 4\}, P_{m_{h}}=P_{m_{h}^{\prime}}=\{3 / 4,3 / 4\}$,
- As $\alpha \rightarrow 1$, both $\pi_{1}^{\prime} \rightarrow \pi_{1}$ and $\pi_{2}^{\prime} \rightarrow \pi_{1}$.
- Hence, $\min \left\{E V\left(\pi_{1}^{\prime}\right), E V\left(\pi_{2}^{\prime}\right)\right\} \rightarrow E V\left(\pi_{1}\right)=2 / 3$

Synonyms are necessary

- Main result 2: If optimal ambiguous persuasion is valuable, then weak synonyms are necessary
- Intuitively, synonyms are needed to hedge against low-payoff signal structures
- They preserve the desired sets of posteriors (or receiver's actions) across messages
- How many signal structures are needed for the optimal ambiguous persuasion? Only two.

Conclusion

- The paper provides the sharp characterization of optimal persuasion with maxmin preferences of players
- It provides the necessary and sufficient tools for the solution
- It demonstrates how synonyms and ambiguity in messages appear
endogenously in communication
- Ideas are clear and intuitive ex-post, but (very) non-trivial ex-ante

Conclusion

- The paper provides the sharp characterization of optimal persuasion with maxmin preferences of players
- It provides the necessary and sufficient tools for the solution
- It demonstrates how synonyms and ambiguity in messages appear endogenously in communication
- Ideas are clear and intuitive ex-post, but (very) non-trivial ex-ante

Conclusion

- The paper provides the sharp characterization of optimal persuasion with maxmin preferences of players
- It provides the necessary and sufficient tools for the solution
- It demonstrates how synonyms and ambiguity in messages appear endogenously in communication
- Ideas are clear and intuitive ex-post, but (very) non-trivial ex-ante

Conclusion

- The paper provides the sharp characterization of optimal persuasion with maxmin preferences of players
- It provides the necessary and sufficient tools for the solution
- It demonstrates how synonyms and ambiguity in messages appear endogenously in communication
- Ideas are clear and intuitive ex-post, but (very) non-trivial ex-ante

Comments

- Ambiguous persuasion is more effective than Bayesian persuasion, but it is more complicated
- It requires more complicated signal structures and a bigger message space (as dictated by maxmin preferences of the sender) - this problem can be relaxed in the case of the Bayesian sender
- It requires randomizing among signal structures (as dictated by maxmin preferences of the receiver)
- An ambiguous device is a mixture over signal structures. It is an element in

$$
\Delta \pi=\Delta(\Delta p)=\Delta(\Delta(\Delta \Omega))
$$

Comments

- Ambiguous persuasion is more effective than Bayesian persuasion, but it is more complicated
- It requires more complicated signal structures and a bigger message space (as dictated by maxmin preferences of the sender)
- this problem can be relaxed in the case of the Bayesian sender
- It requires randomizing among signal structures (as dictated by maxmin preferences of the receiver) An ambiguous device is a mixture over signal structures. It is an element in

Comments

- Ambiguous persuasion is more effective than Bayesian persuasion, but it is more complicated
- It requires more complicated signal structures and a bigger message space (as dictated by maxmin preferences of the sender)
- this problem can be relaxed in the case of the Bayesian sender
- It requires randomizing among signal structures (as dictated by maxmin preferences of the receiver)
- An ambiguous device is a mixture over signal structures. It is an element in

$$
\Delta \pi=\Delta(\Delta p)=\Delta(\Delta(\Delta \Omega))
$$

Comments

- How to implement ambiguous devices in practice?
- If the marginal cost of implementation is C, is it lower than the marginal benefit of ambiguous persuasion:

$$
\bar{V}\left(p_{0}\right)-V\left(p_{0}\right) \gtrless C
$$

- What can be achieved with simple signal structures, say, deterministic ones?

Comments

- How to implement ambiguous devices in practice?
- If the marginal cost of implementation is C, is it lower than the marginal benefit of ambiguous persuasion:

$$
\bar{V}\left(p_{0}\right)-V\left(p_{0}\right) \gtrless C
$$

- What can be achieved with simple signal structures, say, deterministic ones?

Comments

- How to implement ambiguous devices in practice?
- If the marginal cost of implementation is C, is it lower than the marginal benefit of ambiguous persuasion:

$$
\bar{V}\left(p_{0}\right)-V\left(p_{0}\right) \gtrless C
$$

- What can be achieved with simple signal structures, say, deterministic ones?

