
Algorithmic Persuasion
with No Externalities

November 16th, The Economics of Strategic Communication and Persuasion: Application to Evidence-Based Public Policy, CIRANO.

School of Computer Science
and

Department of Mathematics and Statistics

Discussant: Adrian Vetta

Trottier Fellow in Science and Public Policy

Shaddin Dughmi and Haifeng Xu

McGill University

The central paradigm in computer science is that an algorithm A is good if:

 A runs in polynomial time in the input size n.

The Central
Paradigm of

Computer Science

That is, A runs in time for some constant number k.

e.g.

An algorithm is bad if it runs in exponential time.

e.g.

Polynomial Time

An algorithm A is good if it runs in polynomial time in the input size n.

Input Size n

Runtime of
Algorithm

e.g.

An agent wants to discover its preference ordering over n outcomes.

A Good Algorithm: MergeSort runs in time

A Bad Algorithm: ExhaustiveSearch runs in time

 This is simply the problem of sorting n numbers.

The functionality of our economic system is based on this paradigm!

 Public-Key Cryptography: Message senders and recipients have
good algorithms to encrypt and decrypt.

 An eavesdropper has a bad algorithm to decript [prime factorization].

This central paradigm has an equivalent formulation:

 A runs in polynomial time in the input size n.

 The input sizes that A can solve, in a fixed amount T of time,
scales multiplicatively with increasing computational power.

An Equivalent
Characterization

Multiplicative Scalability

An algorithm A is good if the input sizes it can solve, in a fixed amount T
of time, scales multiplicatively with increasing computational power.

Runtime of
Algorithm

Input Sizes solved in Time T

Moore’s Law: Computational power doubles roughly every two years.

Exponential time algorithms will never be able to solve large problems.

Moore’s Law

Thus, improvements in hardware will never overcome bad algorithm design.

Software
versus

Hardware

Indeed, the current dramatic breakthroughs in computer science are based
upon better (faster and higher performance) algorithmic techniques.

Computational
Complexity

As a first step, we do this by assigning problems to complexity classes
in the computational hierarchy.

Therefore, a basic aim of computer science is to understand which
problems have good algorithms and which problems don’t.

The set of decision problems that can be solved in
exponential time by Exhaustive Search.NP

The set of decision problems that can always be solved
in polynomial time by a (deterministic) computer.P

The set of decision problems that can always be solved
in polynomial time by a non-deterministic computer.

e.g.

The hardest problems in these groups form an equivalence class
called complete problems.

Conjecture

 This conjecture states that computation is harder than verification.

Informally 2: If P = NP then having a wizard who can magically
find you an optimal solution does not help you in your search!

Informally 1: If P = NP then the existence of a bad algorithm
(i.e. exhaustive search) implies the existence of a good algorithm.

The

Traditionally, computer scientists have studied computation in the
context of an optimizer designing fast code in problem solving.

However, recently there has been an strong interest in dealing with
situations where there multiple decision-makers.

 Because it explains why every example in economics textbooks and
academic papers have only two agents and at most two time periods!

Why should Economists or Game
Theorists or Bayesian Persuaders care
about computation?

For example, we have no good algorithms for

 Because it applies beyond computers to every decision-maker and
decision-making process and to all mechanisms and markets.

 Because it explains why every example in economics textbooks and
academic papers have only two agents and at most two time periods!

 Nash equilibria in Bimatrix Games. Market Equilibria.

 Fair Division, etc. Combinatorial Auctions.

Comments and Questions
The main result shows, for any monotone set function f, a computational

equivalence between optimizing the private signal and the maximizating f
plus an additive function.

Bayesian Persuasion relates very closely to Correlated Equilibria.

 The proof is cleverly pieced together in via the techniques of
reduction, LP duality and separation oracles.

 Can you explain why Bayesian persuasion is a more general problem?

 The techniques used in the paper also relate closely to approaches taken to
find welfare maximizing correlated equilibria.

 How do your methods differ?

 Can your methods be used to obtain stronger results for correlated
equilibria or other problems?

