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The central paradigm in computer science is that an algorithm A is good if:

 A runs in polynomial time in the input size n.

The Central 
Paradigm of 

Computer Science

That is, A runs in time                                  for some constant number k.

e.g.

An algorithm is bad if it runs in exponential time.

e.g.



Polynomial Time

An algorithm A is good if it runs in polynomial time in the input size n.

Input Size n

Runtime of
Algorithm

e.g.



An agent wants to discover its preference ordering over n outcomes.

A Good Algorithm: MergeSort runs in time                       

A Bad Algorithm: ExhaustiveSearch runs in time 

 This is simply the problem of sorting n numbers.

The functionality of our economic system is based on this paradigm!

 Public-Key Cryptography: Message senders and recipients have 
good algorithms to encrypt and decrypt.

 An eavesdropper has a bad algorithm to decript [prime factorization].



This central paradigm has an equivalent formulation:

 A runs in polynomial time in the input size n.

 The input sizes that A can solve, in a fixed amount T of time, 
scales multiplicatively with increasing computational power.

An Equivalent 
Characterization 



Multiplicative Scalability

An algorithm A is good if the input sizes it can solve, in a fixed amount T 
of time, scales multiplicatively with increasing computational power.

Runtime of
Algorithm

Input Sizes solved in Time T



Moore’s Law:  Computational power doubles roughly every two years. 

Exponential time algorithms will never be able to solve large problems.

Moore’s Law



Thus, improvements in hardware will never overcome bad algorithm design.

Software 
versus 

Hardware

Indeed, the current dramatic breakthroughs in computer science are based 
upon better (faster and higher performance) algorithmic techniques.



Computational 
Complexity

As a first step, we do this by assigning problems to complexity classes 
in the computational hierarchy.

Therefore, a basic aim of computer science is to understand which 
problems have good algorithms and which problems don’t.

The set of decision problems that can be solved in 
exponential time by Exhaustive Search.NP

The set of decision problems that can always be solved 
in polynomial time by a (deterministic) computer.P

The set of decision problems that can always be solved 
in polynomial time by a non-deterministic computer.

e.g.

The hardest problems in these groups form an equivalence class 
called complete problems.



Conjecture

 This conjecture states that computation is harder than verification.

Informally 2: If P = NP then having a wizard who can magically 
find you an optimal solution does not help you in your search!

Informally 1:  If P = NP then the existence of a bad algorithm 
(i.e. exhaustive search) implies the existence of a good algorithm.

The



Traditionally, computer scientists have studied computation in the 
context of an optimizer designing fast code in problem solving.

However, recently there has been an strong interest in dealing with 
situations where there multiple decision-makers.



 Because it explains why every example in economics textbooks and 
academic papers have only two agents and at most two time periods!

Why should Economists or Game 
Theorists or Bayesian Persuaders care 
about computation?

For example, we have no good algorithms for

 Because it applies beyond computers to every decision-maker and 
decision-making process and to all mechanisms and markets.

 Because it explains why every example in economics textbooks and 
academic papers have only two agents and at most two time periods!

 Nash equilibria in Bimatrix Games.  Market Equilibria.

 Fair Division, etc. Combinatorial Auctions.



Comments and Questions
The main result shows, for any monotone set function f, a computational 

equivalence between optimizing the private signal and the maximizating f 
plus an additive function.

Bayesian Persuasion relates very closely to Correlated Equilibria. 

 The proof is cleverly pieced together in via the techniques of 
reduction, LP duality and separation oracles.

 Can you explain why Bayesian persuasion is a more general problem? 

 The techniques used in the paper also relate closely to approaches taken to 
find welfare maximizing correlated equilibria.

 How do your methods differ?

 Can your methods be used to obtain stronger results for correlated 
equilibria or other problems?


