Algorithmic Persuasion with No Externalities

Haifeng Xu

Postdoctoral Fellow, Harvard (\rightarrow UVA CS from Fall 2019)

Joint work with Shaddin Dughmi

- ➢Introduction and Model
- Persuasion through the Algorithmic Lens
- ≻Conclusion

Model

One sender persuades multiple receivers with no externalities

- Academic advisor vs. two fellowship programs
- > 1/3 of the advisor's students are excellent; 2/3 are average
- A fresh graduate is randomly drawn from this population
- Each fellowship:
 - Utility $1 + \epsilon$ for awarding excellent student; -1 for average student
 - Utility 0 for no award
 - ✤ A-priori, only knows the advisor's student population
 - Student can accept both fellowships

$$(1 + \epsilon) \times 1/3 - 1 \times 2/3 < 0$$

Awarding Not awarding

- Academic advisor vs. two fellowship programs
- > 1/3 of the advisor's students are excellent; 2/3 are average
- A fresh graduate is randomly drawn from this population
- Each fellowship:
 - Utility $1 + \epsilon$ for awarding excellent student; -1 for average student
 - Utility 0 for no award
 - ✤ A-priori, only knows the advisor's student population
 - Student can accept both fellowships
- > Advisor
 - Utility 1 if student gets at least one fellowship, 0 otherwise
 - Knows whether the student is excellent or not

- Attempt 1: always say "excellent" (equivalently, no information)
 - Fellowships ignore the recommendation
 - ✤ No fellowship awarded, advisor utility 0

- Attempt 2: honest recommendation (equivalently, full information)
 - ✤ 1/3 of students get both fellowships
 - ✤ Advisor expected utility 1/3

- > Attempt 3: noisy information \rightarrow advisor expected utility 2/3
 - Optimal public scheme

- ➤ Attempt 4: optimal private scheme → advisor utility 1
 - When student is excellent, "strong" to both fellowships
 - Otherwise: "strong" to one fellowship, chosen randomly
- Conditioned on "strong", excellent with prob 1/2
- Always at least one fellowship recommended "strong"

Generalize this example to n fellowships:

advisor utility of optimal private scheme

 $\geq \frac{n+1}{2}$ advisor utility of optimal pubic scheme

Conceptual Message

Being able to persuade privately may have a huge advantage

Model : Persuasion with No Externalities

- > One sender, n receivers
- ▶ Receiver *i* takes a binary action $a_i \in \{0,1\}$, resulting in utility $r_i(a_i | \theta)$
 - ♦ No externality: $r_i(a_i|\theta)$ does not depends on a_j for $j \neq i$

A (random) state of nature from discrete set Θ

Model : Persuasion with No Externalities

- > One sender, n receivers
- ► Receiver *i* takes a binary action $a_i \in \{0,1\}$, resulting in utility $r_i(a_i | \theta)$
 - ♦ No externality: $r_i(a_i|\theta)$ does not depends on a_j for j ≠ i
- Sender utility is a set function f(S), where $S = \{$ receivers taking action $1\}$
 - Assume f(S) is monotone non-decreasing
- > All receivers and the sender share a *common* prior belief of θ
- > Additionally, sender can observe realized θ
- > Before θ is realized, sender commits to a signaling scheme (i.e., a randomized map from states of nature to signals)
 - Private scheme: different (possibly correlated) signals to different receivers
 - Public scheme: the same signal to each receiver
- > After θ realized, sender sample signals and then communicate them to receivers

Model : Persuasion with No Externalities

[Arieli/Babichenko'16] characterizes optimal *private* signaling scheme for *special classes* of f(S) when *two states* of nature.

<u>This work</u>: pin down complexity of optimal private and public persuasion for natural classes of sender objectives

- ➢Introduction and Model
- Persuasion through the Algorithmic Lens
- ≻Conclusion

Why Algorithms?

Enable automated application

Persuading selfish drivers

Persuading users of recommendation systems

Why Algorithms?

- Enable automated application
- Understand complexity and limitation of the model
 - Efficient computability is an important modeling prerequisite
 - Some settings are combinatorial by nature
- Lead to economic/structural insights

"If your laptop cannot find it (the equilibrium), then neither can the market."

– Kamal Jain

The Algorithmic Lens

Polynomial time solvable ...really? $O(n^{100})$?

Cannot have a polynomial time algorithm (e.g., NP-hard problems)

Computational Problems

Algorithmic study seeks to understand where a problem lies

Private Persuasion

- An exponential-size linear program
- ➤ Variable $\pi(\theta, S)$ = prob of recommending action 1 to receivers in set S, given state θ
 - Each signal = an action recommendation

Private Persuasion

- An exponential-size linear program
- ➤ Variable $\pi(\theta, S)$ = prob of recommending action 1 to receivers in set S, given state θ
 - Each signal = an action recommendation

$$\begin{array}{ll} \text{maximize} & \mathbf{E}_{\theta,S}[f(S)] \\ \text{subject to} & \mathbf{E}_{\theta,S:i\in S}[r_i(1|\theta)] \geq \mathbf{E}_{\theta,S:i\in S}[r_i(0|\theta)], & \text{for any receiver } i. \\ & \mathbf{E}_{\theta,S:i\notin S}[r_i(0|\theta)] \geq \mathbf{E}_{\theta,S:i\notin S}[r_i(1|\theta)], & \text{for any receiver } i. \\ & \sum_{S\subseteq [n]} \pi(\theta,S) = 1, & \text{for any state } \theta. \\ & \pi(\theta,S) \geq 0, & \text{for } \theta,S. \end{array}$$

Can private persuasion still be done in poly time?

One approach: examine different classes of f(S)

Equivalence Between Private Persuasion and Optimization

Theorem: Optimal private scheme can be computed in poly time *if and only if* (unconstrained) maximization of [f(S) + any modular fnc of S] can be solved in poly time.

Proof: "reduce" these two problems to each other

"Rephrase" or "split" problem A as a set of instances of problem B

 \succ E.g., calculating factorial of *n* reduces to multiplications

Equivalence Between Private Persuasion and Optimization

Theorem: Optimal private scheme can be computed in poly time *if and only if* (unconstrained) maximization of [f(S) + any modular fnc of S] can be solved in poly time.

Proof: "reduce" these two problems to each other

 \Leftarrow : Solve the dual linear program

 \Rightarrow : More intricate

Involve crafting a persuasion instance to encode the set function maximization problem.

Equivalence Between Private Persuasion and Optimization

Theorem: Optimal private scheme can be computed in poly time *if and only if* (unconstrained) maximization of [f(S) + any modular fnc of S] can be solved in poly time.

- Corollary: poly time for supermodular, anonymous (i.e., depend on |S|)
- Corollary: NP-hard for submodular, subadditive
- (Algorithmically) unifies/generalizes results from [Arieli/Babichenko '16] and some results of [Babichenko/Barman'17].

Conceptual Message

Without externalities, optimal private persuasion is closely related to directly maximizing the sender's objective without constraints

Private Persuasion: Submodular Objective

Theorem: If f(S) is submodular, a $(1-1/e - \epsilon)$ -optimal private scheme can be implemented in poly $(n, |\Theta|, 1/\epsilon)$ time.

Proof step 1: existence of a "simple" ε -optimal scheme { π (θ , S)} $_{\theta,S}$

A Structural Lemma

There always exists an ε -optimal private scheme $\{\pi (\theta, S)\}_{\theta,S}$ such that $\pi (\theta)$ is a *uniform distribution* over poly $(n, |\Theta|, 1/\epsilon)$ subsets for every θ .

Private Persuasion: Submodular Objective

Theorem: If f(S) is submodular, a $(1-1/e - \epsilon)$ -optimal private scheme can be implemented in poly $(n, |\Theta|, 1/\epsilon)$ time.

Proof step 2: approximately compute such a "simple" scheme

- For each θ : pick poly $(n, |\Theta|, 1/\epsilon)$ subsets to maximize sender utility
- Reduce to monotone submodular maximization subject to matroid constraints.
 - ✤ (1-1/e) approximation [Calinescu et al. 2011].

Private Persuasion: Submodular Objective

Theorem: If f(S) is submodular, a $(1-1/e - \epsilon)$ -optimal private scheme can be implemented in poly $(n, |\Theta|, 1/\epsilon)$ time.

Remarks

- NP-hard to approximate to within a ratio better than (1-1/e), even with two states of nature [Babichenko/Barman'17]
- With two states, a simple scheme achieves (1-1/e)-approximation: persuade each receiver *independently* to maximize prob of action 1
 - Oblivious to sender objective as long as its submodular!
 - With many states, oblivious schemes will be far from optimality
- Open question: general equivalence between approximate private persuasion and approximate optimization

Sharp contrast to private scheme:

Theorem: For any constant α , it is NP-hard to obtain an α -approximation to optimal public scheme, even for f(S) = |S|.

What instances are hard?

Receivers = vertices

State of nature = a uniformly drawn vertex

Similar receiver payoffs

- Action 0: always 0
- > Action 1: 0.5 if $\theta = i$, -1 if θ is a neighbor of *i*, and 0 otherwise

Sender objective: maximize |S|

Sharp contrast to private scheme:

Theorem: For any constant α , it is NP-hard to obtain an α -approximation to optimal public scheme, even for f(S) = |S|.

What instances are hard?

Given a public signal, *i* takes action 1, if

- > With high chance: $\theta = i$
- > With low chance, θ is a neighbor of *i*

Sharp contrast to private scheme:

Theorem: For any constant α , it is NP-hard to obtain an α -approximation to optimal public scheme, even for f(S) = |S|.

What instances are hard?

Given a public signal, *i* takes action 1, if

- > With high chance: $\theta = i$
- With low chance, θ is a neighbor of *i*

In fact, two neighbor receivers will never take 1 simultaneously

A public signal = an "independent set"

Sharp contrast to private scheme:

Theorem: For any constant α , it is NP-hard to obtain an α -approximation to optimal public scheme, even for f(S) = |S|.

An intuitive explanation:

- Public scheme coordinates all receiver's actions simultaneously
 - Each signal gives action recommendations to all receivers
 - 2^n possible signal outcomes
- Private scheme coordinates each receiver's decisions separately
 - Each signal recommends an action to an receiver

Sharp contrast to private scheme:

Theorem: For any constant α , it is NP-hard to obtain an α -approximation to optimal public scheme, even for f(S) = |S|.

Conceptual Message

Private persuasion is more tractable and effective than public persuasion

- ➢Introduction and Model
- Persuasion through the Algorithmic Lens
- ≻Conclusion

Summary

Systematic algorithmic study for a basic model of persuading multiple agents with no externalities

Private Persuasion	Public Persuasion			
Tractable, Effective	Intractable, Ineffective			

Immediate Open Questions

- > Approximate version of the poly-time equivalence between private persuasion and optimization
- Receivers can share their signals
- ≻Externalities

Some Applications of Persuasion

Conservation drones [XWVT'18]

Most Successful Advertisers and Their Best Ads What their ads look like

Dom bricki	ains		Mo. Budget \$6,558.67	Total Keywords 365	Ad Pos	% Top of Page 45%	Coverage 96%	
tr om/ isults		Thin Brick Veneer Thin Brick Veneer This was a second to be a second to be a second I be a second to be a se		Thin Brick Veneer Thin Brick Veneer The Largest Color Selections. We Ship Everywhere to Everyone!				
n: 2	Cache v14	May 2015 Position: 2	Cache v14	Jun 2015 Position: 10		Cache v14		
almentingmasoncontractor.net		\$794.67	6		096	4%		
local.com			\$6,196,089.96	341171	Indu	0%	100%	
pront	o.com		\$4,538,545.51	360641		0%	63%	
shop411.com			\$4,589,298.89	488846		0%	67%	

Law enforcement [XRDT'15, HN'18]

Year Los Argeles, CA I Restaurants Base Delivery 1 Staturants 1 Delivery 1 Staturants 1 Delivery 1 Staturants 1 Delivery 1 Howlin' Ray's Other Pickup 1 Howlin' Ray's Other Delivery 2 Staturants 1 Howlin' Ray's

SS - Southern, Chicken Shop, American
 St - Southern, Chicken Shop, American
 Southern, Chicken Shop, American
 Southern, Chicken Shop, American
 Southern, Chicken Shop, American
 Southern, Southe

Recommendation systems [MSS'15, MSSW '16]

Traffic routing [VFH'15, BCKS '16] Ad auctions [EFGLT'12, BBX'18]

Queueing systems [LI'17]

Thank You

Questions?