Relational Contracts with Private Information: The Upside of Implicit Downsizing Costs

Matthias Fahn (JKU Linz) Nicolas Klein (Université de Montréal)

Montréal, November 16, 2018

Introduction			
 Introduction 			
Model			
Benchmark: Public Info			
Private Types			
Extensions			
Conclusion			
Literature			

Introduction

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

A principal wants to give an agent incentives to exert effort **repeatedly**; has some private info about productivity of agent's labour. Optimal effort depends on this productivity.

Introduction

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

A principal wants to give an agent incentives to exert effort **repeatedly**; has some private info about productivity of agent's labour. Optimal effort depends on this productivity.

Effort is observable but not contractible.

Only one-period (formal) contracts; principal can pay the agent a "voluntary" bonus to reward him for his effort.

Bonus is bounded above by value of *future* relationship.

Introduction

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

A principal wants to give an agent incentives to exert effort **repeatedly**; has some private info about productivity of agent's labour. Optimal effort depends on this productivity.

Effort is observable but not contractible.

Only one-period (formal) contracts; principal can pay the agent a "voluntary" bonus to reward him for his effort.

Bonus is bounded above by value of *future* relationship.

Novelty: When deciding on the bonus payment, the principal has private information about the productivity of the agent's effort **in the next period.**

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

Model

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

One principal, one agent (both risk neutral).

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

One principal, one agent (both risk neutral).

Time t = 1, 2, ...

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

One principal, one agent (both risk neutral).

Time t = 1, 2, ...

Common discount factor $\delta \in (0, 1)$.

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

One principal, one agent (both risk neutral).

Time t = 1, 2, ...

Common discount factor $\delta \in (0, 1)$.

Labour productivity in period *t* depends on type $\theta_t \in \{\theta^l, \theta^h\}$ ($0 < \theta^l < \theta^h$).

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

One principal, one agent (both risk neutral).

Time t = 1, 2, ...

Common discount factor $\delta \in (0, 1)$.

Labour productivity in period t depends on type $\theta_t \in \{\theta^l, \theta^h\}$ $(0 < \theta^l < \theta^h)$. $[\theta_1 = \theta^h; \theta_t = \theta^h$ with probability $q \in (0, 1)$ for all $t = 2, 3, \cdots$ (iid).]

Introduction

- Model
- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

1. Principal offers 1-period contract, consisting of wages w_t , sends a (cheap-talk) message from binary space.

Introduction

- Model
- Setup
- Timing
- Objectives
- PPE
- Benchmark: Public Info
- Private Types
- Extensions
- Conclusion
- Literature

- 1. Principal offers 1-period contract, consisting of wages w_t , sends a (cheap-talk) message from binary space.
- 2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

- 1. Principal offers 1-period contract, consisting of wages w_t , sends a (cheap-talk) message from binary space.
- 2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
- 3. If $d_t = 1$, agent chooses his effort $n_t \ge 0$; effort costs cn_t (c > 0).

Introduction

- Model
- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

- 1. Principal offers 1-period contract, consisting of wages w_t , sends a (cheap-talk) message from binary space.
- 2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
- 3. If $d_t = 1$, agent chooses his effort $n_t \ge 0$; effort costs cn_t (c > 0).
- 4. Principal privately observes next period's type θ_{t+1} .

Introduction

- Model
- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

- 1. Principal offers 1-period contract, consisting of wages w_t , sends a (cheap-talk) message from binary space.
- 2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
- 3. If $d_t = 1$, agent chooses his effort $n_t \ge 0$; effort costs cn_t (c > 0).
- 4. Principal privately observes next period's type θ_{t+1} .
- 5. Output $y_t = g(n_t)$ is realized and publicly observed (not contractible!); $g : \mathbb{R}_+ \to \mathbb{R}_+$ is C^2 , with g(0) = 0, g' > 0 > g'', $g'(0) = \infty$, $g'(\infty) = 0$; profit $\theta_t y_t$.

→ First-best effort $n^*(\theta)$ given by $\theta g'(n^*(\theta)) = c$.

Introduction

- Model
- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

- Private Types
- Extensions
- Conclusion
- Literature

- 1. Principal offers 1-period contract, consisting of wages w_t , sends a (cheap-talk) message from binary space.
- 2. Agent accepts or rejects: $d_t \in \{0, 1\}$. If he rejects, both get 0.
- 3. If $d_t = 1$, agent chooses his effort $n_t \ge 0$; effort costs cn_t (c > 0).
- 4. Principal privately observes next period's type θ_{t+1} .
- 5. Output $y_t = g(n_t)$ is realized and publicly observed (not contractible!); $g : \mathbb{R}_+ \to \mathbb{R}_+$ is C^2 , with g(0) = 0, g' > 0 > g'', $g'(0) = \infty$, $g'(\infty) = 0$; profit $\theta_t y_t$.

→ First-best effort $n^*(\theta)$ given by $\theta g'(n^*(\theta)) = c$.

6. Bonus $b_t \ge 0$ is paid by the P to A.

The Players' Payoffs

Introduction

Principal:

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

$$d_t \left(\theta_t g(n_t) - w_t\right) + E\left[-b_t + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} d_\tau \left(\theta_\tau g(n_\tau) - w_\tau - b_\tau\right)\right].$$

The Players' Payoffs

Introduction

Principal:

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

$$d_t \left(\theta_t g(n_t) - w_t\right) + E \left[-b_t + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} d_\tau \left(\theta_\tau g(n_\tau) - w_\tau - b_\tau\right) \right].$$

Agent:

$$d_t \left(w_t - c \, n_t \right) + E \left[b_t + \sum_{\tau=t+1}^{\infty} \delta^{\tau-t} d_\tau \left(-c \, n_\tau + w_\tau + b_\tau \right) \right].$$

Solution Concept

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

Solution Concept: PPE (standard in this literature).

Public strategy = Strategy which does not condition on *past* private info (which is not payoff-relevant!).

Solution Concept

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

Solution Concept: PPE (standard in this literature).

Public strategy = Strategy which does not condition on *past* private info (which is not payoff-relevant!).

Restrict attention to pure strategies.

 \Rightarrow On-path equilibrium actions completely determined by past type realizations θ^t .

Solution Concept

Introduction

Model

- Setup
- Timing
- Objectives
- PPE

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

Solution Concept: PPE (standard in this literature).

Public strategy = Strategy which does not condition on *past* private info (which is not payoff-relevant!).

Restrict attention to pure strategies.

 \Rightarrow On-path equilibrium actions completely determined by past type realizations θ^t .

Look for a best PPE for the principal. This equilibrium also maximizes joint surplus.

Introduction

Model

Benchmark: Public Info

- θ public info
- Optimum

Private Types

Extensions

Conclusion

Literature

Benchmark: Public Info

Introduction

Model

Benchmark: Public Info

 $\bullet \ \theta$ public info

• Optimum

Private Types

Extensions

Conclusion

Literature

Introduction

Model

Benchmark: Public Info

• heta public info

• Optimum

Private Types

Extensions

Conclusion

Literature

1. Agent needs to accept offer: $U(\theta^t) \ge 0$ for all θ^t .

Introduction

Model

Benchmark: Public Info

- heta public info
- Optimum

Private Types

Extensions

Conclusion

Literature

1. Agent needs to accept offer: $U(\theta^t) \ge 0$ for all θ^t .

2. After receiving w_t , agent must find it optimal to exert the right level of effort:

 $-n(\theta^{t})c+q\left(b^{h}(\theta^{t})+\delta U^{h}(\theta^{t})\right)+(1-q)\left(b^{l}(\theta^{t})+\delta U^{l}(\theta^{t})\right)$ $\geq -\tilde{n}c+q\left(b^{h}(\theta^{t},\tilde{n})+\delta U^{h}(\theta^{t},\tilde{n})\right)$ $+(1-q)\left(b^{l}(\theta^{t},\tilde{n})+\delta U^{l}(\theta^{t},\tilde{n})\right).$

Introduction

Model

Benchmark: Public Info

- heta public info
- Optimum

Private Types

Extensions

Conclusion

Literature

1. Agent needs to accept offer: $U(\theta^t) \ge 0$ for all θ^t .

2. After receiving w_t , agent must find it optimal to exert the right level of effort:

 $-n(\theta^{t})c+q\left(b^{h}(\theta^{t})+\delta U^{h}(\theta^{t})\right)+(1-q)\left(b^{l}(\theta^{t})+\delta U^{l}(\theta^{t})\right)$ $\geq -\tilde{n}c+q\left(b^{h}(\theta^{t},\tilde{n})+\delta U^{h}(\theta^{t},\tilde{n})\right)$ $+(1-q)\left(b^{l}(\theta^{t},\tilde{n})+\delta U^{l}(\theta^{t},\tilde{n})\right).$

3. It must be optimal for the principal to make equilibrium bonus payments

$$-b^{h}(\theta^{t}) + \delta \Pi^{h}(\theta^{t}) \ge 0$$
 (DEh)
$$-b^{l}(\theta^{t}) + \delta \Pi^{l}(\theta^{t}) \ge 0.$$
 (DEI)

Public Info II

Introduction

Model

Benchmark: Public Info

- ullet heta public info
- Optimum

Private Types

Extensions

Conclusion

Literature

(DEh) and (DEI) can be combined into

$$-\left(qb^{h}(\theta^{t}) + (1-q)b^{l}(\theta^{t})\right) + \delta\left(q\Pi^{h}(\theta^{t}) + (1-q)\Pi^{l}(\theta^{t})\right) \ge 0.$$
(DE)

Public Info III

Introduction

Model

- Benchmark: Public Info
- heta public info
- Optimum

Private Types

Extensions

Conclusion

Literature

Equilibrium effort only depends on the current state: $n(\theta^t) = n(\theta_t)$:

Only observable deviations; no need to destroy surplus on the equilibrium path \Rightarrow Want to be as close to FB-level as possible Stationary environment (iid): Maximum enforceable effort levels the same for every history θ^t .

Profit-Maximizing Equilibrium with Public Info

Introduction

Model

Benchmark: Public Info

• θ public info

Optimum

Private Types

Extensions

Conclusion

Literature

Proposition: Assume the firm's type is publicly observable. Then, there are levels of the discount factor, $\overline{\delta}$ and $\underline{\delta}$, with $0 < \underline{\delta} < \overline{\delta} < 1$, such that

- n^h and n^l are at their efficient levels for $\delta \geq \overline{\delta}$.
 - $n^{h} \geq n^{l}$, but n^{h} is inefficiently low, and n^{l} is at its efficient level for $\underline{\delta} \leq \delta < \overline{\delta}$;
 - $n^{h} = n^{l}$, and both effort levels are inefficiently low for $\delta < \underline{\delta}$.

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \, \delta$ high
- \bullet Intermediate δ

Extensions

Conclusion

Literature

Private Types

Thruthtelling Constraints

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \ \delta \ {\rm high}$
- \bullet Intermediate δ

Extensions

Conclusion

Literature

Principal needs incentives not to misrepresent his private type after any history θ^t :

→ Additional constraint:

Thruthtelling Constraints

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \ \delta \ {\rm high}$
- \bullet Intermediate δ

Extensions

Conclusion

Literature

Principal needs incentives not to misrepresent his private type after any history θ^t :

→ Additional constraint:

$$-b^{h}(\theta^{t}) + \delta\Pi^{h}(\theta^{t}) \ge -b^{l}(\theta^{t}) + \delta\tilde{\Pi}^{l}(\theta^{t})$$
(TTh)
$$-b^{l}(\theta^{t}) + \delta\Pi^{l}(\theta^{t}) \ge -b^{h}(\theta^{t}) + \delta\tilde{\Pi}^{h}(\theta^{t}).$$
(TTI)

Thruthtelling Constraints

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \, \delta \, {\rm high}$
- \bullet Intermediate δ

Extensions

Conclusion

Literature

Principal needs incentives not to misrepresent his private type after any history θ^t :

→ Additional constraint:

$$-b^{h}(\theta^{t}) + \delta\Pi^{h}(\theta^{t}) \ge -b^{l}(\theta^{t}) + \delta\tilde{\Pi}^{l}(\theta^{t})$$
(TTh)
$$-b^{l}(\theta^{t}) + \delta\Pi^{l}(\theta^{t}) \ge -b^{h}(\theta^{t}) + \delta\tilde{\Pi}^{h}(\theta^{t}).$$
(TTI)

where $\tilde{\Pi}^{l}(\theta^{t}) = \Pi^{l}(\theta^{t}) + \theta^{h}g(n^{l}(\theta^{t})) - \theta^{l}g(n^{l}(\theta^{t}));$ $\tilde{\Pi}^{h}(\theta^{t}) = \Pi^{h}(\theta^{t}) - \theta^{h}g(n^{h}(\theta^{t})) + \theta^{l}g(n^{h}(\theta^{t})).$

Uses One-Deviation Principle.

Overview of Constraints

Introduction

Model

Benchmark: Public Info

Private Types

• Truthtelling

• Overview

• Dynamics

 $\bullet \, \delta$ high

 \bullet Intermediate δ

Extensions

Conclusion

Literature

$$-n(\theta^{t})c+q\left(b^{h}(\theta^{t})+\delta U^{h}(\theta^{t})\right)+(1-q)\left(b^{l}(\theta^{t})+\delta U^{l}(\theta^{t})\right)\geq0$$
(IC)

 $U(\theta^t) \ge 0$

$$-b^{h}(\theta^{t}) + \delta\Pi^{h}(\theta^{t}) \ge 0$$

$$-b^{l}(\theta^{t}) + \delta\Pi^{l}(\theta^{t}) \ge 0.$$
(DEh)
(DEI)

$$b^{h}(\theta^{t}) + \delta \Pi^{h}(\theta^{t}) \ge -b^{l}(\theta^{t}) + \delta \widetilde{\Pi}^{l}(\theta^{t})$$
 (TTh)

$$-b^{l}(\theta^{t}) + \delta\Pi^{l}(\theta^{t}) \ge -b^{h}(\theta^{t}) + \delta\tilde{\Pi}^{h}(\theta^{t})$$
(TTI)

(IR)

M. Fahn & N. Klein

The (EC) Constraint

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \ \delta \ {\rm high}$
- \bullet Intermediate δ

Extensions

Conclusion

Literature

Agency problem with private info boils down to constraint

$$-n(\theta^{t})c + \delta q \Pi^{h}(\theta^{t}) + \delta(1-q)\Pi^{l}(\theta^{t}) \ge \delta q g(n^{l}(\theta^{t})) \left(\theta^{h} - \theta^{l}\right).$$
(EC)

The (EC) Constraint

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \ \delta \ {\rm high}$
- \bullet Intermediate δ

Extensions

Conclusion

Literature

Agency problem with private info boils down to constraint

 $-n(\theta^{t})c + \delta q \Pi^{h}(\theta^{t}) + \delta(1-q)\Pi^{l}(\theta^{t}) \ge \delta q g(n^{l}(\theta^{t})) \left(\theta^{h} - \theta^{l}\right).$ (EC)

(LHS) like (DE) constraint

(RHS) New effect: Information Rent of the P, who always has the option of claiming tomorrow's profits are lower (only $\theta^l g(n^l(\theta^t)))$ than they actually are $(\theta^h g(n^l(\theta^t)))$.

Dynamics of Equilibrium Employment

Introduction

Model

Benchmark: Public Info

Private Types

• Truthtelling

• Overview

• Dynamics

 $\bullet \, \delta \, {\rm high}$

• Intermediate δ

Extensions

Conclusion

Literature

Lemma: There exists an optimal equilibrium with the property that, for every two histories θ^t and $\tilde{\theta}^{\tilde{t}}$, $n^h(\theta^t) = n^h(\tilde{\theta}^{\tilde{t}})$. Furthermore, for every history θ^t , $n^l(\theta^t) = n^l_i$, where $i \in \{0, 1, 2, ...\}$ denotes the number of previous consecutive periods τ with $\theta_{\tau} = \theta^l$.

Dynamics of Equilibrium Employment

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \; \delta \; {\rm high} \;$
- Intermediate δ

Extensions

Conclusion

Literature

Lemma: There exists an optimal equilibrium with the property that, for every two histories θ^t and $\tilde{\theta}^{\tilde{t}}$, $n^h(\theta^t) = n^h(\tilde{\theta}^{\tilde{t}})$. Furthermore, for every history θ^t , $n^l(\theta^t) = n^l_i$, where $i \in \{0, 1, 2, ...\}$ denotes the number of previous consecutive periods τ with $\theta_{\tau} = \theta^l$.

 n^h only enters the (LHS) of the (EC) constraint; reduction of $n^h(\theta^t)$ does not increase P's commitment. \Rightarrow Have the n^h that is the closest possible to the FB after any history θ^t .

Environment stationary \Rightarrow Closest n^h to the FB possible is the same after any history θ^t .

By contrast, reduction of n^l enhances P's commitment.

Result: High δ

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- ullet δ high
- \bullet Intermediate δ

Extensions

Conclusion

Literature

Proposition: There exists a $\overline{\delta} \in (0, 1)$ such that optimal equilibrium profits are equal to first-best surplus for all $\delta > \overline{\delta}$. In this case, for every history θ^t , first-best effort levels $n^*(\theta_t)$ can be implemented.

Intermediate δ

Introduction

Model

Benchmark: Public Info

Private Types

• Truthtelling

• Overview

• Dynamics

- $\bullet \ \delta \ {\rm high}$
- \bullet Intermediate δ

Extensions

Conclusion

Literature

Proposition: There exist discount factors $\underline{\delta}$ and $\overline{\delta}$, with $0 < \underline{\delta} < \overline{\delta} < 1$, such that, in an optimal equilibrium, for $\delta \in (\underline{\delta}, \overline{\delta})$, n^h and n_0^l are inefficiently low; for all $i \ge 1$, $n_i^l = n^*(\theta^l)$.

Intermediate δ

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \; \delta \; {\rm high} \;$
- Intermediate δ

Extensions Conclusion

Literature

Proposition: There exist discount factors $\underline{\delta}$ and $\overline{\delta}$, with $0 < \underline{\delta} < \overline{\delta} < 1$, such that, in an optimal equilibrium, for $\delta \in (\underline{\delta}, \overline{\delta})$, n^h and n_0^l are inefficiently low; for all $i \ge 1$, $n_i^l = n^*(\theta^l)$.

(ECh) binds; need to reduce n^h .

 n_0^l is also reduced! \Rightarrow Cost of not telling the truth in high state goes up; "transferring effort from low to high state"

 n_i^l at FB-levels! Discount factor is still high enough for $n^*(\theta^l)$ to be enforceable.

Optimal effort in low periods immediately following a high period is **not sequentially optimal**.

Intermediate δ

Introduction

Model

Benchmark: Public Info

Private Types

- Truthtelling
- Overview
- Dynamics
- $\bullet \; \delta \; {\rm high} \;$
- Intermediate δ

Extensions Conclusion

Literature

Proposition: There exist discount factors $\underline{\delta}$ and $\overline{\delta}$, with $0 < \underline{\delta} < \overline{\delta} < 1$, such that, in an optimal equilibrium, for $\delta \in (\underline{\delta}, \overline{\delta})$, n^h and n_0^l are inefficiently low; for all $i \ge 1$, $n_i^l = n^*(\theta^l)$.

(ECh) binds; need to reduce n^h .

 n_0^l is also reduced! \Rightarrow Cost of not telling the truth in high state goes up; "transferring effort from low to high state"

 n_i^l at FB-levels! Discount factor is still high enough for $n^*(\theta^l)$ to be enforceable.

Optimal effort in low periods immediately following a high period is **not sequentially optimal**.

⇒ Implicit Downsizing Costs

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

• Persistent Shock

• Further Extensions

Conclusion

Literature

Extensions

Persistent Shocks

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Persistent Shock

• Further Extensions

Conclusion

Literature

Assume that principal starts with a high type; type remains high for another period with probability q. With probability 1 - q, type becomes low and remains low forever.

Persistent Shocks

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Persistent Shock

• Further Extensions

Conclusion

Literature

- Assume that principal starts with a high type; type remains high for another period with probability q. With probability 1 q, type becomes low and remains low forever.
- After claiming type is low, have to stick to that forever after, yielding constraints

$$-n^{h}c + \delta q \Pi^{h} + \delta (1-q) \Pi_{0}^{l} \ge \left(\theta^{h} - \theta^{l}\right) \sum_{i=0}^{\infty} \left(\delta q\right)^{i+1} g(n_{i}^{l})$$
(ECh)

$$-n_i^l c + \delta \Pi_{i+1}^l \ge 0 \tag{DEli}$$

Expression for information rent is now $(\theta^h - \theta^l) \sum_{i=0}^{\infty} (\delta q)^{i+1} g(n_i^l)$, while it was $\delta q (\theta^h - \theta^l) g(n_0^l)$ before.

Results – Persistent Downsizing

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Persistent Shock

• Further Extensions

Conclusion

Literature

Suppose $q < \frac{\theta^l g(n_{FB}^l) \left(n_{FB}^h - n_{FB}^l\right)}{\theta^h n_{FB}^l \left(g(n_{FB}^h) - g(n_{FB}^l)\right)}$.

 Intermediate discount factor where (DEIi) holds for FB effort levels, but (ECh) does not:

Results – Persistent Downsizing

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Persistent Shock

• Further Extensions

Conclusion

- Suppose $q < \frac{\theta^l g(n_{FB}^l) \left(n_{FB}^h n_{FB}^l\right)}{\theta^h n_{FB}^l \left(g(n_{FB}^h) g(n_{FB}^l)\right)}$.
- Intermediate discount factor where (DEli) holds for FB effort levels, but (ECh) does not:

$$n_i^l < n_{i+1}^l < n_{FB}^l$$
, with $\lim_{i \to \infty} n_i^l = n_{FB}^l$

Persistent Shock–Overshooting

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Persistent Shock

• Further Extensions

Conclusion

- Overshooting still observed, but recovery gradual and never complete:
 - Falsely claiming that type is low forces principal to stick to claiming low state forever thereafter
 - In expectation, costs of distortion to off-path principal remain higher than those to on-path principal throughout
 - But: Increasing likelihood that the state will indeed have switched to low ⇒ Decrease in the cost difference over time (faster the lower q)
 - \Rightarrow Optimal to distort the less the further past the announcement of the switch to the low state is.

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Persistent Shock

• Further Extensions

Conclusion

Literature

• Imperfectly persistent shocks: Qualitatively similar result for some parameters

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

- Persistent Shock
- Further Extensions

Conclusion

Literature

• Imperfectly persistent shocks: Qualitatively similar result for some parameters

Low discount factors (and $q\theta^h \ge \theta^l$): Overshooting and subsequent oscillation

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

- Persistent Shock
- Further Extensions

Conclusion

- Imperfectly persistent shocks: Qualitatively similar result for some parameters
- Low discount factors (and $q\theta^h \ge \theta^l$): Overshooting and subsequent oscillation
 - The role of timing:

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

- Persistent Shock
- Further Extensions

Conclusion

- Imperfectly persistent shocks: Qualitatively similar result for some parameters
- Low discount factors (and $q\theta^h \ge \theta^l$): Overshooting and subsequent oscillation
- The role of timing:
 - \circ θ_t is learnt at the start of period t
 - Private info is not costly; sequential optimality!

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

- Persistent Shock
- Further Extensions

Conclusion

- Imperfectly persistent shocks: Qualitatively similar result for some parameters
- Low discount factors (and $q\theta^h \ge \theta^l$): Overshooting and subsequent oscillation
- The role of timing:
 - \circ θ_t is learnt at the start of period t
 - Private info is not costly; sequential optimality!
 - $\circ \quad \theta_{t+1}$ is learnt at the start of period t
 - Effort depends only on *current* type
 - Reason: Need to shut down P's incentives to over-report

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

Conclusion

M. Fahn & N. Klein

Relational Contracts with Private Information - 25

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

• Profit-Maximizing PPE

Agent never gets a rent

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

- Agent never gets a rent
- History dependence only via distance to last h-period

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

- Agent never gets a rent
- History dependence only via distance to last h-period
- For high δ , get FB

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

- Agent never gets a rent
- History dependence only via distance to last h-period
- For high δ , get FB
- For intermediate δ , get implicit downsizing costs

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

- Agent never gets a rent
- History dependence only via distance to last h-period
- For high δ , get FB
- For intermediate δ , get implicit downsizing costs
- In *l*-period immediately following an *h*-period, labour input is reduced beyond efficient measure

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

- Agent never gets a rent
- History dependence only via distance to last h-period
- For high δ , get FB
- For intermediate δ , get implicit downsizing costs
- In *l*-period immediately following an *h*-period, labour input is reduced beyond efficient measure
- This reduces the distortions in *previous* periods only; increases the firm's commitment and thereby profits!

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

- Agent never gets a rent
- History dependence only via distance to last h-period
- For high δ , get FB
- For intermediate $\delta,$ get implicit downsizing costs
- In *l*-period immediately following an *h*-period, labour input is reduced beyond efficient measure
- This reduces the distortions in *previous* periods only; increases the firm's commitment and thereby profits!
- Reduction of labour input not sequentially optimal!

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Conclusion

Literature

• Relational Contracts With Private Information

- Non-verifiable yet observable effort over time
- P has private info about next period's labour productivity

Profit-Maximizing PPE

- Agent never gets a rent
- History dependence only via distance to last h-period
- For high δ , get FB
- For intermediate $\delta,$ get implicit downsizing costs
- In *l*-period immediately following an *h*-period, labour input is reduced beyond efficient measure
- This reduces the distortions in *previous* periods only; increases the firm's commitment and thereby profits!
- Reduction of labour input not sequentially optimal!
- On-path destruction of surplus (even though private info is one-sided)

M. Fahn & N. Klein

Introduction

Model

Benchmark: Public Info

Private Types

Extensions

Conclusion

Literature

• Literature

Literature

M. Fahn & N. Klein

Relational Contracts with Private Information - 27

Literature

Introduction

- Model
- Benchmark: Public Info

Private Types

Extensions

Conclusion

- Literature
- Literature

- Bull (1987); MacLeod & Malcolmson (1989)
- Levin (2003)
- Halac (2012): P has private info about his (persistent) outside option.
- Li & Matouschek (2013): P has private information about cost of compensating the agent.
- Malcomson (2015): P has private info about the value of A's effort in the current period; A has private info about costs
- Malcomson (2016): A's persistent cost type is private information; full separation not possible when continuation payoffs are on the Pareto frontier