

and BRUNO STRULOVICI Department of Economics, Northwestern University

November 16th, 2018 Montréal, Canada

Introduction	Model	Results	Remedies	Conclusion
Motivation				

Many crimes/abuses are hard to verify with smoking-gun evidence:

$\,\hookrightarrow\,$ workplace bullying, discrimination, sexual assault, etc.

Prevalent way to assess innocence:

 \hookrightarrow using potential victims' unverifiable reports.

Research Questions:

1. How informative are these reports?

How does the number of potential reports affect informativeness?

- 2. How do unverifiable reports affect the incentives to commit crimes?
- 3. How to improve informativeness and reduce crime?

Introduction	Model	Results	Remedies	Conclusion
Motivation				

Many crimes/abuses are hard to verify with smoking-gun evidence:

 \hookrightarrow workplace bullying, discrimination, sexual assault, etc.

Prevalent way to assess innocence:

 \hookrightarrow using potential victims' unverifiable reports.

Research Questions:

1. How informative are these reports?

How does the number of potential reports affect informativeness?

- 2. How do unverifiable reports affect the incentives to commit crimes?
- 3. How to improve informativeness and reduce crime?

Introduction	Model	Results	Remedies	Conclusion
Motivation				

Many crimes/abuses are hard to verify with smoking-gun evidence:

 \hookrightarrow workplace bullying, discrimination, sexual assault, etc.

Prevalent way to assess innocence:

 \hookrightarrow using potential victims' unverifiable reports.

Research Questions:

1. How informative are these reports?

How does the number of potential reports affect informativeness?

- 2. How do unverifiable reports affect the incentives to commit crimes?
- 3. How to improve informativeness and reduce crime?

Introduction	Model	Results	Remedies	Conclusion
Overview				

Model: Endogenous incentives to commit and report crimes.

- \hookrightarrow A potential offender decides who to commit crimes against.
- \hookrightarrow Potential victims decide whether to file report or not, may have private benefits/costs from accusations.
- \hookrightarrow Convict/Acquit depends on prob of guilty after observing all reports.

Takeaway messages:

- 1. Multiple potential victims + large punishment to the convicted.
- \Rightarrow Uninformative reports & significant prob of crime.

- \Rightarrow Informative reports & vanishing prob of crime.
- 2. Reducing punishment.
- \Rightarrow Restore informativeness & reduce prob of crime.

Introduction	Model	Results	Remedies	Conclusion
Overview				
-	enous incentives to	commit and report	crimes.	

- $\,\hookrightarrow\,$ A potential offender decides who to commit crimes against.
- \hookrightarrow Potential victims decide whether to file report or not, may have private benefits/costs from accusations.
- \hookrightarrow Convict/Acquit depends on prob of guilty after observing all reports.

- 1. Multiple potential victims + large punishment to the convicted.
- \Rightarrow Uninformative reports & significant prob of crime.

- \Rightarrow Informative reports & vanishing prob of crime.
- 2. Reducing punishment.
- \Rightarrow Restore informativeness & reduce prob of crime.

Introduction	Model	Results	Remedies	Conclusion
Overview				
-	enous incentives to	commit and report	t crimes.	

- $\,\hookrightarrow\,$ A potential offender decides who to commit crimes against.
- \hookrightarrow Potential victims decide whether to file report or not, may have private benefits/costs from accusations.
- \hookrightarrow Convict/Acquit depends on prob of guilty after observing all reports.

- 1. Multiple potential victims + large punishment to the convicted.
- \Rightarrow Uninformative reports & significant prob of crime.

- \Rightarrow Informative reports & vanishing prob of crime.
- 2. Reducing punishment.
- \Rightarrow Restore informativeness & reduce prob of crime.

Introduction	Model	Results	Remedies	Conclusion
Overview				
Model: Endo	genous incenti	ves to commit and r	eport crimes.	

- $\,\hookrightarrow\,$ A potential offender decides who to commit crimes against.
- \hookrightarrow Potential victims decide whether to file report or not, may have private benefits/costs from accusations.
- $\,\hookrightarrow\,$ Convict/Acquit depends on prob of guilty after observing all reports.

- 1. Multiple potential victims + large punishment to the convicted.
- \Rightarrow Uninformative reports & significant prob of crime.

- \Rightarrow Informative reports & vanishing prob of crime.
- 2. Reducing punishment.
- \Rightarrow Restore informativeness & reduce prob of crime.

Introduction	Model	Results	Remedies	Conclusion
Overview				
Model: End	ogenous incenti	ves to commit and r	report crimes.	

- $\,\hookrightarrow\,$ A potential offender decides who to commit crimes against.
- \hookrightarrow Potential victims decide whether to file report or not, may have private benefits/costs from accusations.
- $\,\hookrightarrow\,$ Convict/Acquit depends on prob of guilty after observing all reports.

- 1. Multiple potential victims + large punishment to the convicted.
- \Rightarrow Uninformative reports & significant prob of crime.

- \Rightarrow Informative reports & vanishing prob of crime.
- 2. Reducing punishment.
- \Rightarrow Restore informativeness & reduce prob of crime.

Introduction	Model	Results	Remedies	Conclusion
Overview				
Model: Endog	enous incentives to	commit and report	crimes.	

- $\,\hookrightarrow\,$ A potential offender decides who to commit crimes against.
- \hookrightarrow Potential victims decide whether to file report or not, may have private benefits/costs from accusations.
- $\,\hookrightarrow\,$ Convict/Acquit depends on prob of guilty after observing all reports.

- 1. Multiple potential victims + large punishment to the convicted.
- \Rightarrow Uninformative reports & significant prob of crime.

- \Rightarrow Informative reports & vanishing prob of crime.
- 2. Reducing punishment.
- \Rightarrow Restore informativeness & reduce prob of crime.

Introduction	Model	Results	Remedies	Conclusion
Roadmap				

- 1. Baseline model.
- 2. Main results & intuition.
- 3. Restore informativeness & reduce crime.

Introduction	Model	Results	Remedies	Conclusion
Roadmap				

- 1. Baseline model.
- 2. Main results & intuition.
- 3. Restore informativeness & reduce crime.

Introduction	Model	Results	Remedies	Conclusion
Baseline M	lodel			

A game between:

- \hookrightarrow 1 potential abuser (principal, *e.g. supervisor*);
- \hookrightarrow *n* potential victims (agents, *e.g. subordinates*),

indexed by $i \in \{1, 2, ..., n\}$ with $n \ge 1$;

 \hookrightarrow 1 Bayesian judge;

that unfolds in three stages.

Introduction	Model	Results	Remedies	Conclusion
Stage 1				

Principal chooses $\theta \equiv {\theta_1, ..., \theta_n} \in {\{0, 1\}^n}$.

 $\hookrightarrow \theta_i = 1$: Commit a crime against agent *i*.

 $\hookrightarrow \theta_i = 0$: Does not commit a crime against agent *i*.

Introduction	Model	Results	Remedies	Conclusion
Stage 2				

Agent *i* observes two pieces of private info:

- 1. the principal's choice of θ_i
- 2. realization of a payoff shock $\omega_i \sim N(\mu, \sigma^2)$, i.i.d.

Agents simultaneously choose $\{a_1, a_2, ..., a_n\} \in \{0, 1\}^n$:

 \hookrightarrow $a_i = 1$: Agent *i* files a report against the principal.

 \hookrightarrow $a_i = 0$: Agent *i* does not file a report against the principal.

Agent *i* can file a report regardless of θ_i .

 \hookrightarrow The informativeness of his report is endogenous.

Minor technical detail (for refinement):

→ With small but positive prob, an agent is *mechanical* and files a report with exogenous prob α ∈ (0, 1).

Introduction	Model	Results	Remedies	Conclusion
Stage 2				

Agent *i* observes two pieces of private info:

- 1. the principal's choice of θ_i
- 2. realization of a payoff shock $\omega_i \sim N(\mu, \sigma^2)$, i.i.d.

Agents simultaneously choose $\{a_1, a_2, ..., a_n\} \in \{0, 1\}^n$:

- \hookrightarrow $a_i = 1$: Agent *i* files a report against the principal.
- \hookrightarrow $a_i = 0$: Agent *i* does not file a report against the principal.

Agent *i* can file a report regardless of θ_i .

 $\,\hookrightarrow\,$ The informativeness of his report is endogenous.

Minor technical detail (for refinement):

→ With small but positive prob, an agent is *mechanical* and files a report with exogenous prob *α* ∈ (0,1).

Introduction	Model	Results	Remedies	Conclusion
Stage 2				

Agent *i* observes two pieces of private info:

- 1. the principal's choice of θ_i
- 2. realization of a payoff shock $\omega_i \sim N(\mu, \sigma^2)$, i.i.d.

Agents simultaneously choose $\{a_1, a_2, ..., a_n\} \in \{0, 1\}^n$:

- \hookrightarrow $a_i = 1$: Agent *i* files a report against the principal.
- \hookrightarrow $a_i = 0$: Agent *i* does not file a report against the principal.

Agent *i* can file a report regardless of θ_i .

 $\,\hookrightarrow\,$ The informativeness of his report is endogenous.

Minor technical detail (for refinement):

 \hookrightarrow With small but positive prob, an agent is *mechanical* and files a report with exogenous prob $\alpha \in (0, 1)$.

Introduction	Model	Results	Remedies	Conclusion
Stage 3				

The judge observes $\mathbf{a} \equiv \{a_1, a_2, ..., a_n\}$ and updates his belief about the prob with which the principal is guilty:

$$\Pr\left(\sum_{\substack{i=1\\ \text{event that principal is guilty}}}^{n} \theta_i \ge 1 \quad | \quad \mathbf{a} \quad \right)$$

Then the judge decides whether to *convict* or *acquit* the principal.

- \hookrightarrow Convict: principal loses his job or removed from power.
- \hookrightarrow Acquit: principal stays in power.

Introduction	Model	Results	Remedies	Conclusion
Stage 3				

The judge observes $\mathbf{a} \equiv \{a_1, a_2, ..., a_n\}$ and updates his belief about the prob with which the principal is guilty:

$$\Pr\left(\sum_{\substack{i=1\\ \text{event that principal is guilty}}^{n} \theta_i \ge 1 \quad | \quad \mathbf{a} \right)$$

Then the judge decides whether to *convict* or *acquit* the principal.

- \hookrightarrow Convict: principal loses his job or removed from power.
- \hookrightarrow Acquit: principal stays in power.

Devoffe	
Payoffs	

Principal's payoff: $\sum_{i=1}^{n} \theta_i - L \cdot \mathbf{1}$ {Principal is convicted}.

Agent *i*'s payoff:

- $\hookrightarrow 0$ if the principal is convicted,
- $\hookrightarrow \omega_i b\theta_i ca_i$ if the principal is acquitted.

Judge has a quadratic payoff function, s.t.

- \hookrightarrow If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 \, \middle| \, \mathbf{a}\right) > \pi^*$, then strictly prefer to convict.
- \hookrightarrow If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 | \mathbf{a}\right) < \pi^*$, then strictly prefer to acquit.
- \hookrightarrow If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 \middle| \mathbf{a}\right) = \pi^*$, then indifferent.

where $\pi^* \in (0,1)$ is an exogenous cutoff.

Introduction	Model	Results	Remedies	Conclusion
Payoffs				

Principal's payoff: $\sum_{i=1}^{n} \theta_i - L \cdot \mathbf{1}$ {Principal is convicted}.

Agent *i*'s payoff:

- $\hookrightarrow 0$ if the principal is convicted,
- $\hookrightarrow \omega_i b\theta_i ca_i$ if the principal is acquitted.

Judge has a quadratic payoff function, s.t.

 \hookrightarrow If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 | \mathbf{a}\right) > \pi^*$, then strictly prefer to convict.

 \hookrightarrow If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 | \mathbf{a}\right) < \pi^*$, then strictly prefer to acquit.

 \hookrightarrow If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 \middle| \mathbf{a}\right) = \pi^*$, then indifferent.

where $\pi^* \in (0,1)$ is an exogenous cutoff.

Introduction	Model	Results	Remedies	Conclusion
Payoffs				

Principal's payoff: $\sum_{i=1}^{n} \theta_i - L \cdot \mathbf{1}$ {Principal is convicted}.

Agent *i*'s payoff:

- $\hookrightarrow 0$ if the principal is convicted,
- $\hookrightarrow \omega_i b\theta_i ca_i$ if the principal is acquitted.

Judge has a quadratic payoff function, s.t.

$$\hookrightarrow$$
 If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 \, \middle| \, \mathbf{a}\right) > \pi^*$, then strictly prefer to convict.

 \hookrightarrow If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 | \mathbf{a}\right) < \pi^*$, then strictly prefer to acquit.

$$\hookrightarrow$$
 If $\Pr\left(\sum_{i=1}^{n} \theta_i \ge 1 \middle| \mathbf{a}\right) = \pi^*$, then indifferent.

where $\pi^* \in (0,1)$ is an exogenous cutoff.

 \hookrightarrow *L* > 0: Punishment of conviction relative to the marginal benefit of committing a crime.

 $\hookrightarrow b > 0$: An agent's loss from failing to convict his abuser.

 $\rightarrow c > 0$: An agent's loss from the principal's retaliation.

 $\Rightarrow \pi^* \in (0,1)$: Conviction threshold, captures the society's/judge's ideology towards the two types of errors.

Introduction	Model	Results	Remedies	Conclusion
Interpretatio	n of Parar	neters		

- \hookrightarrow L > 0: Punishment of conviction relative to the marginal benefit of committing a crime.
- $\hookrightarrow b > 0$: An agent's loss from failing to convict his abuser.
- $\hookrightarrow c > 0$: An agent's loss from the principal's retaliation.
- $\Rightarrow \pi^* \in (0,1)$: Conviction threshold, captures the society's/judge's ideology towards the two types of errors.

Introduction	Model	Results	Remedies	Conclusion
Interpretatio	n of Parar	neters		

- $\hookrightarrow L > 0$: Punishment of conviction relative to the marginal benefit of committing a crime.
- $\hookrightarrow b > 0$: An agent's loss from failing to convict his abuser.
- \hookrightarrow c > 0: An agent's loss from the principal's retaliation.
- $\hookrightarrow \pi^* \in (0,1)$: Conviction threshold, captures the society's/judge's ideology towards the two types of errors.

Introduction	Model	Results	Remedies	Conclusion
Roadmap				

1. Baseline model.

2. Main results & intuition.

- Equilibrium refinement.
- Single-agent vs two-agent.
- Comparative statics w.r.t. number of agents.

3. Restore informativeness & reduce crime.

Introduction	Model	Results	Remedies	Conclusion
Refinement:	Monoton	e-Responsive	Equilibrium	
Sequential Equilil	orium + Two A	Additional Requirem	ents	

- $\eta: \{0,1\}^n \to [0,1]$, mapping from report profiles to prob of conviction.
 - 1. Responsiveness: q(0, 0, ..., 0) = 0.
 - 2. Monotonicity: If $\mathbf{a} \succeq \mathbf{a}'$, then $q(\mathbf{a}) \ge q(\mathbf{a}')$.

Role of responsiveness: Rules out trivial equilibria s.t.

- \hookrightarrow the principal chooses $\theta_1 = ... = \theta_n = 1$ with prob 1,
- \hookrightarrow the principal is convicted no matter what.

(uses the mechanical type perturbation)

Role of monotonicity: Endow reports with meanings.

 → Satisfied when principal can optimally commit to *retaliation plans* (privately) against each agent.

Introduction	Model	Results	Kemeules	Conclusion
Refinement:	Monoton	e-Responsive	Equilibrium	
Sequential Equilib	orium + Two A	Additional Requirem	ents	

Domodios Conol

- $q: \{0,1\}^n \rightarrow [0,1]$, mapping from report profiles to prob of conviction.
 - 1. Responsiveness: q(0, 0, ..., 0) = 0.

Madal Davida

2. Monotonicity: If $\mathbf{a} \succeq \mathbf{a}'$, then $q(\mathbf{a}) \ge q(\mathbf{a}')$.

Role of responsiveness: Rules out trivial equilibria s.t.

- \hookrightarrow the principal chooses $\theta_1 = \ldots = \theta_n = 1$ with prob 1,
- \hookrightarrow the principal is convicted no matter what.

(uses the mechanical type perturbation)

Role of monotonicity: Endow reports with meanings.

 → Satisfied when principal can optimally commit to *retaliation plans* (privately) against each agent.

Introduction	Woder	Results	Remeules	Conclusion
Refinement:	Monoton	e-Responsive	Equilibrium	
Sequential Equilib	orium + Two A	Additional Requirem	nents	

Poculte

- $q: \{0,1\}^n \to [0,1]$, mapping from report profiles to prob of conviction.
 - 1. Responsiveness: q(0, 0, ..., 0) = 0.

Model

2. Monotonicity: If $\mathbf{a} \succeq \mathbf{a}'$, then $q(\mathbf{a}) \ge q(\mathbf{a}')$.

Role of responsiveness: Rules out trivial equilibria s.t.

- \hookrightarrow the principal chooses $\theta_1 = ... = \theta_n = 1$ with prob 1,
- \hookrightarrow the principal is convicted no matter what.

(uses the mechanical type perturbation)

Role of monotonicity: Endow reports with meanings.

 → Satisfied when principal can optimally commit to *retaliation plans* (privately) against each agent.

Introduction	Woder	Results	Reflicules	Conclusion
Refinement:	Monoton	e-Responsive	Equilibrium	
Sequential Equilib	orium + Two A	Additional Requirem	nents	

Poculte

- $q: \{0,1\}^n \rightarrow [0,1]$, mapping from report profiles to prob of conviction.
 - 1. Responsiveness: q(0, 0, ..., 0) = 0.

Madal

2. Monotonicity: If $\mathbf{a} \succeq \mathbf{a}'$, then $q(\mathbf{a}) \ge q(\mathbf{a}')$.

Role of responsiveness: Rules out trivial equilibria s.t.

- \hookrightarrow the principal chooses $\theta_1 = ... = \theta_n = 1$ with prob 1,
- \hookrightarrow the principal is convicted no matter what.

(uses the mechanical type perturbation)

Role of monotonicity: Endow reports with meanings.

 \hookrightarrow Satisfied when principal can optimally commit to *retaliation plans* (privately) against each agent.

Introduction	Model	Results	Remedies	Conclusion
Existence	& Properties			

For every (n, b, c, π^*) , there exists $\overline{L} > 0$ such that when $L > \overline{L}$, a monotone-responsive equilibrium exists.

In what follows, focus on environments with large L,

 \hookrightarrow common properties of *all* monotone-responsive equilibria.

Preliminary observation: Crime happens with interior probability.

Lemma

In every equilibrium that satisfies responsiveness, $\Pr(\sum_{i=1}^{n} \theta_i \ge 1) \in (0, 1)$.

- 1. If prob of crime is 0, then conviction will never happen,
- \Rightarrow Principal has strict incentive to commit crimes.
- 2. If prob of crime is 1, then the principal is convicted no matter what,
- \Rightarrow Violates responsiveness.

Introduction	Model	Results	Remedies	Conclusion
Existence	& Properties			

For every (n, b, c, π^*) , there exists $\overline{L} > 0$ such that when $L > \overline{L}$, a monotone-responsive equilibrium exists.

In what follows, focus on environments with large L,

 \hookrightarrow common properties of *all* monotone-responsive equilibria.

Preliminary observation: Crime happens with interior probability.

Lemma

In every equilibrium that satisfies responsiveness, $\Pr(\sum_{i=1}^{n} \theta_i \ge 1) \in (0, 1)$.

- 1. If prob of crime is 0, then conviction will never happen,
- \Rightarrow Principal has strict incentive to commit crimes.
- 2. If prob of crime is 1, then the principal is convicted no matter what,
- \Rightarrow Violates responsiveness.

Introduction	Model	Results	Remedies	Conclusion
Existence	& Properties			

For every (n, b, c, π^*) , there exists $\overline{L} > 0$ such that when $L > \overline{L}$, a monotone-responsive equilibrium exists.

In what follows, focus on environments with large L,

 \hookrightarrow common properties of *all* monotone-responsive equilibria.

Preliminary observation: Crime happens with interior probability.

Lemma

In every equilibrium that satisfies responsiveness, $Pr(\sum_{i=1}^{n} \theta_i \ge 1) \in (0, 1)$.

- 1. If prob of crime is 0, then conviction will never happen,
- \Rightarrow Principal has strict incentive to commit crimes.
- 2. If prob of crime is 1, then the principal is convicted no matter what,
- \Rightarrow Violates responsiveness.

Introduction	Model	Results	Remedies	Conclusion
Existence	& Properties			

For every (n, b, c, π^*) , there exists $\overline{L} > 0$ such that when $L > \overline{L}$, a monotone-responsive equilibrium exists.

In what follows, focus on environments with large L,

 \hookrightarrow common properties of *all* monotone-responsive equilibria.

Preliminary observation: Crime happens with interior probability.

Lemma

In every equilibrium that satisfies responsiveness, $Pr(\sum_{i=1}^{n} \theta_i \ge 1) \in (0, 1)$.

- 1. If prob of crime is 0, then conviction will never happen,
- \Rightarrow Principal has strict incentive to commit crimes.
- 2. If prob of crime is 1, then the principal is convicted no matter what,
- \Rightarrow Violates responsiveness.

Introduction	Model	Results	Remedies	Conclusion
Benchmark	: Single-Ag	ent		

Proposition (Single Agent)

When n = 1 and $L \rightarrow \infty$, the informativeness of report, measured by:

$$I_s \equiv \frac{\Pr(agent \ reports \mid \theta = 1)}{\Pr(agent \ reports \mid \theta = 0)}$$

converges to $+\infty$ *and the equilibrium prob of crime converges to* 0.

Takeaway: One potential victim & severe punishment of conviction

- \hookrightarrow Arbitrarily informative report.
- \hookrightarrow Vanishing prob of crime.

Introduction	Model	Results	Remedies	Conclusion
Benchmark	: Single-Ag	ent		

Proposition (Single Agent)

When n = 1 and $L \rightarrow \infty$, the informativeness of report, measured by:

$$I_s \equiv \frac{\Pr(agent \ reports \mid \theta = 1)}{\Pr(agent \ reports \mid \theta = 0)}$$

converges to $+\infty$ and the equilibrium prob of crime converges to 0.

Takeaway: One potential victim & severe punishment of conviction

- $\,\hookrightarrow\,$ Arbitrarily informative report.
- \hookrightarrow Vanishing prob of crime.

Introduction Model Results Remedies Conclusion

Result: Two-Agent Scenario

Theorem

When n = 2 and $L \rightarrow \infty$, the aggregate informativeness of agents' reports, measured by

$$I_m \equiv \frac{\Pr(both \ agents \ report \mid \sum_{i=1}^{2} \theta_i \ge 1)}{\Pr(both \ agents \ report \mid \sum_{i=1}^{2} \theta_i = 0)}$$

converges to 1 *and the equilibrium prob of crime converges to* π^* *.*

Takeaway: Multiple potential victims & severe punishment of conviction

- \hookrightarrow Arbitrarily uninformative reports.
- \hookrightarrow Significant prob of crime.

Introduction Model Results Remedies Conclusion

Result: Two-Agent Scenario

Theorem

When n = 2 and $L \rightarrow \infty$, the aggregate informativeness of agents' reports, measured by

$$I_m \equiv \frac{\Pr(both \ agents \ report \mid \sum_{i=1}^{2} \theta_i \ge 1)}{\Pr(both \ agents \ report \mid \sum_{i=1}^{2} \theta_i = 0)}$$

converges to 1 *and the equilibrium prob of crime converges to* π^* *.*

Takeaway: Multiple potential victims & severe punishment of conviction

- \hookrightarrow Arbitrarily uninformative reports.
- \hookrightarrow Significant prob of crime.

Agent's equilibrium strategy is characterized by two cutoffs (ω^*, ω^{**}),

- \hookrightarrow When $\theta_i = 1$, report iff $\omega_i \leq \omega^*$.
- \hookrightarrow When $\theta_i = 0$, report iff $\omega_i \leq \omega^{**}$.

Important property of single-agent benchmark: $\omega^* - \omega^{**} = b$.

As $L \to +\infty$, we have $\omega^*, \omega^{**} \to -\infty$.

Tail property of normal distributions: $\forall b > 0$,

$$\lim_{\omega\to-\infty}\Phi(\omega)/\Phi(\omega-b)=\infty,$$

 \hookrightarrow applies to all *thin-tail* distributions.

Agent's equilibrium strategy is characterized by two cutoffs (ω^*, ω^{**}),

- \hookrightarrow When $\theta_i = 1$, report iff $\omega_i \leq \omega^*$.
- \hookrightarrow When $\theta_i = 0$, report iff $\omega_i \leq \omega^{**}$.

Important property of single-agent benchmark: $\omega^* - \omega^{**} = b$.

As $L \to +\infty$, we have $\omega^*, \omega^{**} \to -\infty$.

Tail property of normal distributions: $\forall b > 0$,

$$\lim_{\omega\to-\infty}\Phi(\omega)/\Phi(\omega-b)=\infty,$$

 \hookrightarrow applies to all *thin-tail* distributions.

Agent's equilibrium strategy is characterized by two cutoffs (ω^*, ω^{**}),

- \hookrightarrow When $\theta_i = 1$, report iff $\omega_i \leq \omega^*$.
- \hookrightarrow When $\theta_i = 0$, report iff $\omega_i \leq \omega^{**}$.

Important property of single-agent benchmark: $\omega^* - \omega^{**} = b$.

As $L \to +\infty$, we have $\omega^*, \omega^{**} \to -\infty$.

Tail property of normal distributions: $\forall b > 0$,

 $\lim_{\omega\to-\infty}\Phi(\omega)/\Phi(\omega-b)=\infty,$

 \rightarrow applies to all *thin-tail* distributions.

Agent's equilibrium strategy is characterized by two cutoffs (ω^*, ω^{**}),

- \hookrightarrow When $\theta_i = 1$, report iff $\omega_i \leq \omega^*$.
- \hookrightarrow When $\theta_i = 0$, report iff $\omega_i \leq \omega^{**}$.

Important property of single-agent benchmark: $\omega^* - \omega^{**} = b$.

As $L \to +\infty$, we have $\omega^*, \omega^{**} \to -\infty$.

Tail property of normal distributions: $\forall b > 0$,

$$\lim_{\omega\to-\infty}\Phi(\omega)/\Phi(\omega-b)=\infty,$$

 \hookrightarrow applies to all *thin-tail* distributions.

Agent's equilibrium strategy is characterized by two cutoffs (ω^*, ω^{**}),

- \hookrightarrow When $\theta_i = 1$, report iff $\omega_i \leq \omega^*$.
- \hookrightarrow When $\theta_i = 0$, report iff $\omega_i \leq \omega^{**}$.

Important property of single-agent benchmark: $\omega^* - \omega^{**} = b$.

As $L \to +\infty$, we have $\omega^*, \omega^{**} \to -\infty$.

Tail property of normal distributions: $\forall b > 0$,

$$\lim_{\omega\to-\infty}\Phi(\omega)/\Phi(\omega-b)=\infty,$$

- \hookrightarrow applies to all *thin-tail* distributions.
- $\,\hookrightarrow\,$ agent's report becomes arbitrarily informative in the limit.

When *L* is very large, two reports are required to convict the principal.
→ Otherwise, principal has strict incentive not to commit any crime.

Principal's decisions to commit crimes are strategic substitutes.

In equilibrium, principal will choose three actions with positive prob:

$$\hookrightarrow (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) = (0, 0),$$

$$\hookrightarrow (\theta_1, \theta_2) = (1, 0),$$

 $\hookrightarrow (\boldsymbol{\theta}_1, \boldsymbol{\theta}_2) = (0, 1).$

Introduction	Model	Results	Remedies	Conclusion
Intuition: T	wo-Agent S	cenario		

When L is very large, two reports are required to convict the principal.

 \hookrightarrow Otherwise, principal has strict incentive not to commit any crime.

Principal's decisions to commit crimes are strategic substitutes.

In equilibrium, principal will choose three actions with positive prob: $\hookrightarrow (\theta_1, \theta_2) = (0, 0),$ $\hookrightarrow (\theta_1, \theta_2) = (1, 0),$ $\hookrightarrow (\theta_1, \theta_2) = (0, 1).$

Introduction	Model	Results	Remedies	Conclusion
Intuition: Tw	o-Agent S	cenario		

When L is very large, two reports are required to convict the principal.

 \hookrightarrow Otherwise, principal has strict incentive not to commit any crime.

Principal's decisions to commit crimes are strategic substitutes.

In equilibrium, principal will choose three actions with positive prob:

$$\hookrightarrow (\theta_1, \theta_2) = (0, 0),$$

$$\hookrightarrow \ (\theta_1, \theta_2) = (1, 0),$$

$$\hookrightarrow (\theta_1, \theta_2) = (0, 1).$$

When L is very large, two reports are required to convict the principal.

 \hookrightarrow Otherwise, principal has strict incentive not to commit any crime.

Principal's decisions to commit crimes are strategic substitutes.

In equilibrium, principal will choose three actions with positive prob:

$$\begin{array}{l} \hookrightarrow \ (\theta_1, \theta_2) = (0, 0), \\ \\ \hookrightarrow \ (\theta_1, \theta_2) = (1, 0), \\ \\ \\ \hookrightarrow \ (\theta_1, \theta_2) = (0, 1). \end{array}$$

 \hookrightarrow Incentive to coordinate report with agent *j* to avoid retaliation cost *c*.

What does this coordination motive imply?

→ If $\theta_i = 0$, then he knew that $\theta_j = 1$ with significant prob ⇒ encourages agent *i* to report.

Every agent's equilibrium strategy is still summarized by (ω^*, ω^{**}) ,

 \hookrightarrow Incentive to coordinate report with agent *j* to avoid retaliation cost *c*.

What does this coordination motive imply?

→ If $\theta_i = 0$, then he knew that $\theta_j = 1$ with significant prob ⇒ encourages agent *i* to report.

Every agent's equilibrium strategy is still summarized by (ω^*, ω^{**}) ,

Introduction	Model	Results	Remedies	Conclusion
Two-Agen	t Scenario (c	continued)		

 \hookrightarrow Incentive to coordinate report with agent *j* to avoid retaliation cost *c*.

What does this coordination motive imply?

 $\Rightarrow \text{ If } \theta_i = 1, \text{ then he knew } \theta_j = 0 \text{ for sure} \\ \Rightarrow \text{ discourages agent } i \text{ to report.}$

→ If $\theta_i = 0$, then he knew that $\theta_j = 1$ with significant prob ⇒ encourages agent *i* to report.

Every agent's equilibrium strategy is still summarized by (ω^*, ω^{**}) ,

Introduction	Model	Results	Remedies	Conclusion
Two-Agen	t Scenario (c	ontinued)		

 \hookrightarrow Incentive to coordinate report with agent *j* to avoid retaliation cost *c*.

What does this coordination motive imply?

- $\Rightarrow \text{ If } \theta_i = 1, \text{ then he knew } \theta_j = 0 \text{ for sure} \\ \Rightarrow \text{ discourages agent } i \text{ to report.}$
- \hookrightarrow If $\theta_i = 0$, then he knew that $\theta_j = 1$ with significant prob \Rightarrow encourages agent *i* to report.

Every agent's equilibrium strategy is still summarized by (ω^*, ω^{**}) ,

Introduction	Model	Results	Remedies	Conclusion
Two-Agen	t Scenario (c	continued)		

 \hookrightarrow Incentive to coordinate report with agent *j* to avoid retaliation cost *c*.

What does this coordination motive imply?

- $\Rightarrow \text{ If } \theta_i = 1, \text{ then he knew } \theta_j = 0 \text{ for sure} \\ \Rightarrow \text{ discourages agent } i \text{ to report.}$
- \hookrightarrow If $\theta_i = 0$, then he knew that $\theta_j = 1$ with significant prob \Rightarrow encourages agent *i* to report.

Every agent's equilibrium strategy is still summarized by (ω^*, ω^{**}) ,

Introduction	1	Mod	lel		Results	F	Remedies	Conclusion
		~		~				

What's going on ...

1. Large L

 \Rightarrow Endogenous negative correlation between θ_1 and θ_2 .

- 2. Retaliation cost c & large L
 - \Rightarrow Endogenous coordination motive among agents.

Effect on informativeness of reports & prob of crime:

⇒ Decrease agent *i*'s incentive to report when $\theta_i = 1$. Increase agent *i*'s incentive to report when $\theta_i = 0$.

 \Rightarrow Decrease informativeness & increase prob of crime.

Introduction	Model	Results	Remedies	Conclusion

What's going on ...

1. Large L

 \Rightarrow Endogenous negative correlation between θ_1 and θ_2 .

- 2. Retaliation cost c & large L
 - \Rightarrow Endogenous coordination motive among agents.

Effect on informativeness of reports & prob of crime:

 $\Rightarrow \text{ Decrease agent } i\text{'s incentive to report when } \theta_i = 1.$ Increase agent *i*'s incentive to report when $\theta_i = 0.$

 \Rightarrow Decrease informativeness & increase prob of crime.

lies Conclusion

What's going on ...

1. Large L

 \Rightarrow Endogenous negative correlation between θ_1 and θ_2 .

2. Retaliation cost c & large L

 \Rightarrow Endogenous coordination motive among agents.

Effect on informativeness of reports & prob of crime:

⇒ Decrease agent *i*'s incentive to report when $\theta_i = 1$. Increase agent *i*'s incentive to report when $\theta_i = 0$.

 \Rightarrow Decrease informativeness & increase prob of crime.

Introduction	Model	Results	Remedies	Conclusion

What's going on ...

1. Large L

 \Rightarrow Endogenous negative correlation between θ_1 and θ_2 .

2. Retaliation cost c & large L

 \Rightarrow Endogenous coordination motive among agents.

Effect on informativeness of reports & prob of crime:

- ⇒ Decrease agent *i*'s incentive to report when $\theta_i = 1$. Increase agent *i*'s incentive to report when $\theta_i = 0$.
- \Rightarrow Decrease informativeness & increase prob of crime.

Introduction	Model	Results	Remedies	Conclusion
Comparat	ive Statics w.	r.t. Number o	of Agents	
Aggregat	e informativeness v $I_n \equiv \frac{\Pr(I)}{\Pr(I)}$	when there are <i>n</i> as <i>i</i> agents report \sum_{i} <i>i</i> agents report \sum_{i}		
	$n,k \in \mathbb{N}$ with $n > k$ arge enough L, then			k to n

- 1. The aggregate informativeness of reports decreases.
- 2. The equilibrium prob of crime increases.
- 3. Prob with which each agent reports increases.

Takeaway: Lack of informativeness is not caused by the scarcity of reports.

Introduction	Model	Results	Remedies	Conclusion
Comparativ	ve Statics w.	r.t. Number o	f Agents	
Aggregate	informativeness v	when there are <i>n</i> age	ents:	

$$I_n \equiv \frac{\Pr(n \text{ agents report} \mid \sum_{i=1}^n \theta_i \ge 1)}{\Pr(n \text{ agents report} \mid \sum_{i=1}^n \theta_i = 0)}$$

Theorem

For every $n, k \in \mathbb{N}$ with n > k, if we increase the number of agents from k to n under a large enough L, then

- 1. The aggregate informativeness of reports decreases.
- 2. The equilibrium prob of crime increases.
- 3. Prob with which each agent reports increases.

Takeaway: Lack of informativeness is not caused by the scarcity of reports.

Introduction	Model	Results	Remedies	Conclusion
Comparati	ve Statics w.	r.t. Number o	f Agents	
Aggregate	informativeness v	when there are <i>n</i> age	ents:	

$$I_n \equiv \frac{\Pr(n \text{ agents report} \mid \sum_{i=1}^n \theta_i \ge 1)}{\Pr(n \text{ agents report} \mid \sum_{i=1}^n \theta_i = 0)}$$

Theorem

For every $n, k \in \mathbb{N}$ with n > k, if we increase the number of agents from k to n under a large enough L, then

- 1. The aggregate informativeness of reports decreases.
- 2. The equilibrium prob of crime increases.
- 3. Prob with which each agent reports increases.

Takeaway: Lack of informativeness is not caused by the scarcity of reports.

Introduction	Model	Results	Remedies	Conclusion
Roadmap				

- 1. Baseline model.
- 2. Main results & intuition.
- 3. Restore informativeness & reduce crime.

Introduction Model Results Remedies Conclusion

Ways to restore informativeness

- 1. Offset the negative correlation of agents' private info.
- 2. Offset the coordination motive among agents.

Introduction	Model	Results	Remedies	Conclusion

Offset the negative correlation of agents' private info

Solution: Chooses an intermediate L.

- \Rightarrow Principal's incentives to commit crimes are complements.
- \Rightarrow Positive correlation between agents' private info.
- \Rightarrow Coordination improves informativeness & decreases prob of crime.

When *c* is large, prob of crime vanishes to 0.

Introduction	Model	Results	Remedies	Conclusion
Offset the n	egative cor	relation of age	ents' private in	nfo

Solution: Chooses an intermediate L.

- \Rightarrow Principal's incentives to commit crimes are complements.
- \Rightarrow Positive correlation between agents' private info.
- \Rightarrow Coordination improves informativeness & decreases prob of crime.

When c is large, prob of crime vanishes to 0.

Introduction	Model	Results	Remedies	Conclusion
Offset the n	egative cor	relation of age	ents' private in	nfo

Solution: Chooses an intermediate L.

- \Rightarrow Principal's incentives to commit crimes are complements.
- \Rightarrow Positive correlation between agents' private info.
- \Rightarrow Coordination improves informativeness & decreases prob of crime.

When *c* is large, prob of crime vanishes to 0.

Introduction	Model	Results	Remedies	Conclusion

Offset the coordination motive among agents

Solution: Transfer c to agent i iff he is the lone accuser.

- \Rightarrow Constant distance between the two reporting cutoffs.
- \Rightarrow Arbitrarily informative as $L \rightarrow \infty$.

Introduction	Model	Results	Remedies	Conclusion
Summary				

- \hookrightarrow interaction between incentives to commit and report crimes,
- $\,\hookrightarrow\,$ endogenously assess the informativeness of reports.

What we show: with multiple agents & large punishment of conviction:

- \hookrightarrow Endogenous negative correlation between agents' private info,
- \hookrightarrow Endogenous coordination motive among agents.
- \Rightarrow Uninformative reports & significant prob of crime.
- → Reducing punishment or rewarding lone accuser improves informativeness and decreases crime.

Flag:

Introduction	Model	Results	Remedies	Conclusion
Summary				

- $\,\hookrightarrow\,$ interaction between incentives to commit and report crimes,
- $\,\hookrightarrow\,$ endogenously assess the informativeness of reports.

What we show: with multiple agents & large punishment of conviction:

- \hookrightarrow Endogenous negative correlation between agents' private info,
- \hookrightarrow Endogenous coordination motive among agents.
- \Rightarrow Uninformative reports & significant prob of crime.
- → Reducing punishment or rewarding lone accuser improves informativeness and decreases crime.

Flag:

Introduction	Model	Results	Remedies	Conclusion
Summary				

- \hookrightarrow interaction between incentives to commit and report crimes,
- $\,\hookrightarrow\,$ endogenously assess the informativeness of reports.

What we show: with multiple agents & large punishment of conviction:

- \hookrightarrow Endogenous negative correlation between agents' private info,
- $\,\hookrightarrow\,$ Endogenous coordination motive among agents.
- \Rightarrow Uninformative reports & significant prob of crime.
- → Reducing punishment or rewarding lone accuser improves informativeness and decreases crime.

Flag:

Introduction	Model	Results	Remedies	Conclusion
Summary				

- \hookrightarrow interaction between incentives to commit and report crimes,
- $\,\hookrightarrow\,$ endogenously assess the informativeness of reports.

What we show: with multiple agents & large punishment of conviction:

- \hookrightarrow Endogenous negative correlation between agents' private info,
- \hookrightarrow Endogenous coordination motive among agents.
- \Rightarrow Uninformative reports & significant prob of crime.
- → Reducing punishment or rewarding lone accuser improves informativeness and decreases crime.

Flag:

Introduction	Model	Results	Remedies	Conclusion
Summary				

- \hookrightarrow interaction between incentives to commit and report crimes,
- $\,\hookrightarrow\,$ endogenously assess the informativeness of reports.

What we show: with multiple agents & large punishment of conviction:

- \hookrightarrow Endogenous negative correlation between agents' private info,
- \hookrightarrow Endogenous coordination motive among agents.
- \Rightarrow Uninformative reports & significant prob of crime.
- \hookrightarrow Reducing punishment or rewarding lone accuser improves informativeness and decreases crime.

Flag:

Introduction	Model	Results	Remedies	Conclusion
Summary				

- \hookrightarrow interaction between incentives to commit and report crimes,
- $\,\hookrightarrow\,$ endogenously assess the informativeness of reports.

What we show: with multiple agents & large punishment of conviction:

- \hookrightarrow Endogenous negative correlation between agents' private info,
- \hookrightarrow Endogenous coordination motive among agents.
- \Rightarrow Uninformative reports & significant prob of crime.
- \hookrightarrow Reducing punishment or rewarding lone accuser improves informativeness and decreases crime.

Flag:

 Introduction
 Model
 Results
 Remedies
 Conclusion

Endogenous negative correlation & coordination motives reduce informativeness & increase crime extends when:

 \hookrightarrow Principal has private info about cost/benefit of committing crimes.

e.g. with small prob, the principal hates committing crimes,

e.g. with small prob, the principal is a serial assaulter.

- $\,\hookrightarrow\,$ Principal's marginal benefit from committing crimes is decreasing.
- $\,\hookrightarrow\,$ Punishment for committing multiple crimes is harsher.
- \hookrightarrow After conviction, evidence arrives with positive prob that falsifies a false accusation, then agent who submitted false report is punished.
- $\,\hookrightarrow\,$ Alternative specifications of mechanical types' strategies.
- $\,\hookrightarrow\,$ Cost of accusation is positive when the principal is convicted.
- \hookrightarrow Sequential reporting.

Introduction Model Results Remedies Conclusion
Related Literature

- Failure of info aggregation: Scharfstein and Stein (90), Banerjee (92), Austen-Smith and Banks (96), Morgan and Stocken (08).
 Difference: Negatively correlated private info, arises endogenously.
- Voting: Feddersen and Pesendorfer (96,97,98), Ali et al.(18).
 Difference: Endogenous voting rule & info structure.
- Global games: Carlson and Van Damme (93), Morris and Shin (98), Baliga and Sjöström (04), Chassang and Padró i Miquel (10)

Difference: State orthogonal to normal signal & negative correlation.

- Law and econ: Lee and Suen (18), Silva (18), Baliga et al.(18)
 Difference: Incentives to commit crimes are endogenous, interaction between committing crimes and reporting crimes.
- 5. Inspection games: Dresher (62).

Difference: Judge cannot inspect, elicit info from biased agents.

Normal vs Mechanical Types

Each agent is

- \hookrightarrow *Normal* with probability δ .
- \hookrightarrow *Mechanical* with probability 1δ .

Independent across agents and independent of $\{\omega_1, ..., \omega_n\}$.

How does it affect behavior?

- \hookrightarrow Normal agent flexibly chooses a_i to maximize his payoff.
- \hookrightarrow Mechanical agent automatically reports with prob $\alpha \in (0,1)$.

 $\delta \in (0,1)$ is close to 1, i.e. mechanical types are perturbations. Back

More on Mechanical Types

Why need a small prob of mechanical types?

- \hookrightarrow Strengthens equilibrium refinement.
- \hookrightarrow Guarantees existence after refinement.

Robust against mechanical types' strategies:

- \hookrightarrow Mechanical type's strategy $\Theta_i \times \mathbb{R} \to \Delta\{0, 1\}$.
- $\,\hookrightarrow\,$ Our results extend as long as

1 > Pr(mechanical type reports $|\theta_i = 1$)

 $\geq \Pr(\text{mechanical type reports } | \theta_i = 0) > 0.$

Why prob of report increases when *n* increases?

Single agent: Let q_s be prob of conviction after 1 report.

 \hookrightarrow Threshold when $\theta_i = 1$: $\omega_s^* = c - \frac{c}{q_s}$.

 \hookrightarrow Principal's indifference condition:

$$\frac{1}{\delta L} = q_s \Big(\Phi(\omega_s^*) - \Phi(\omega_s^{**}) \Big)$$

Two agents: Let q_m be prob of conviction after 2 reports.

 \hookrightarrow Threshold when $\theta_i = 1$: $\omega_m^* = c - \frac{c}{q_m Q_0}$,

where Q_0 is the prob of agent *j* reports conditional on $\theta_i = 1$.

 \hookrightarrow Principal's indifference condition:

$$\frac{1}{\delta L} = q_m \Big(\Phi(\omega_m^*) - \Phi(\omega_m^{**}) \Big) Q_0$$

Show $\omega_m^* > \omega_s^*$

Suppose towards a contradiction that $\omega_m^* \leq \omega_s^*$, then

$$\hookrightarrow \omega_s^* = c - \frac{c}{q_s}$$
 and $\omega_m^* = c - \frac{c}{q_m Q_0}$ imply that $q_m Q_0 \le q_s$.

From the principal's indifference conditions:

$$\begin{split} q_m Q_0 \Big(\Phi(\omega_s^*) - \Phi(\omega_s^{**}) \Big) &\leq q_s \Big(\Phi(\omega_s^*) - \Phi(\omega_s^{**}) \Big) \\ &= 1/\delta L = q_m Q_0 \Big(\Phi(\omega_m^*) - \Phi(\omega_m^{**}) \Big). \end{split}$$

Therefore,

$$\Phi(\boldsymbol{\omega}_{s}^{*}) - \Phi(\boldsymbol{\omega}_{s}^{**}) \leq \Phi(\boldsymbol{\omega}_{m}^{*}) - \Phi(\boldsymbol{\omega}_{m}^{**}).$$

On the other hand, since $\omega_s^* \ge \omega_m^*$ and $\omega_s^* - \omega_s^{**} = b > \omega_m^* - \omega_m^{**}$,

$$\Phi(\boldsymbol{\omega}_{s}^{*}) - \Phi(\boldsymbol{\omega}_{s}^{**}) > \Phi(\boldsymbol{\omega}_{m}^{*}) - \Phi(\boldsymbol{\omega}_{m}^{**}).$$

We have a contradiction. Back

Show
$$\omega_m^{**} > \omega_s^{**}$$

Since we have shown that $\omega_m^* > \omega_s^*$,

- \hookrightarrow moreover, $\omega_s^* \omega_s^{**} = b > \omega_m^* \omega_m^{**}$
- \hookrightarrow therefore, $\omega_m^{**} > \omega_s^{**}$.

In general, an individual agent is more likely to report when there are more potential victims, regardless of the value of his θ_i .

