Corporate Taxation and the Decline of the Labor Share

Barış Kaymak Immo Schott

University of Montréal and CIREQ

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

Introduction

Global decline of the labor share

イロト イポト イヨト イヨト 二日

Introduction

Theories

Production Function

- CES with $\sigma < 1$ and decreasing K/L (Lawrence, 2015)
- CES with $\sigma > 1$ and increasing K/L (Karabarbounis and Neiman, 2013)

Market Elements

- More competition (Autor et al., 2017)
- Less competition (De Loecker and Eeckhout, 2017)
- Trade (Elsby et al., 2013)

Institutional Elements

- Unions? (Elsby et al., 2013)
- Corporate Taxation

Introduction

Theories

Production Function

- CES with $\sigma < 1$ and decreasing K/L (Lawrence, 2015)
- CES with $\sigma > 1$ and increasing K/L (Karabarbounis and Neiman, 2013)

Market Elements

- More competition (Autor et al., 2017)
- Less competition (De Loecker and Eeckhout, 2017)
- Trade (Elsby et al., 2013)

Institutional Elements

- Unions? (Elsby et al., 2013)
- Corporate Taxation

Corporate taxation and the labor share : 2007

Corporate taxation and the labor share : manufacturing 2007

Corporate taxation and the labor share : 1981 – 2007

Corporate taxation and the labor share : manufacturing 1981 – 2007

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

Corporate taxation and the labor share

	Manufacturing	Services	Aggregate
corporate tax rate	0.37^{**}	$0.06 \\ (0.05)$	0.16^{**}
w/o country trends	(0.10)		(0.05)
corporate tax rate with country trends	0.22^{**}	0.15^{*}	0.17^{**}
	(0.06)	(0.06)	(0.06)
N	528	528	528

Note.— * p < 0.05, ** p < 0.01. Data comes from KLEMS database and OECD 1981 to 2007. Dependent variable is labor's share of income. All specifications control for fixed year and country effects. Standard errors are clustered at the country level.

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

▲□▶▲□▶▲□▶▲□▶ ▲□▶ □ ○ ○ ○

Corporate Taxes and Labor Share in the US

イロト イポト イヨト イヨト

Corporate Taxes and Labor Share in the US

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

10

Anatomy of the Decline in the US

- 1 large declines within industries, primarily in K-intensive sectors
- 2 limited decline *within* establishments
- 8 rising share of K-intensive firms in output
- 4 roughly stable employment size distribution

Labor share and value added in US Manufacturing

Source : Kehrig and Vincent (2017).

э

イロト イポト イヨト イヨト

Employment Concentration in Manufacturing

Note.- Graph shows the inverse Pareto indexes implied by the employment shares of establishments with more than 250 and 1000 employees.

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

Average Establishment Employment in Manufacturing

э

イロト イポト イヨト イヨト

MODEL

Kaymak - Schott (UdeM 2018)

(ロ)、(型)、(E)、(E)、(E)、(D)、(C)

Model Outline

- General Equilibrium Model of Industry Dynamics (Hopenhayn and Rogerson, 1993)
- Firms differ in capital intensity as well as productivity
- Entry, exit and production decisions
- Income is subject to corporate taxation
- Representative household

Production

Output

$$q_{it} = \varepsilon_{it}(k_{it}^{\alpha_i} n_{it}^{\beta_i})$$
 with $\alpha_i + \beta_i = \gamma < 1$

- Productivity

$$\log \varepsilon_{it} = \rho \log \varepsilon_{it-1} + \sigma_{\varepsilon} \eta_{it}$$
, where $\eta_t \sim N(0, 1)$

- Capital Intensity

 $\alpha_i \sim G(\alpha)$ drawn once at entry

Kaymak - Schott (UdeM 2018)

(ロ) (型) (E) (E) E のQC

Timing of events

production stage

- given capital, hire labor and carry out production
- o sell product and pay taxes on net income
- 2 research stage
 - o incumbents observe productivity for the next investment cycle
 - o entrants observe productivity and production technology
- 8 planning stage
 - o if exit, dissolve company, distribute capital/profits to shareholders
 - if stay (or entrant), decide how much to invest in capital for the next period

pick up between stages 2 and 3

Incumbent Firm's Problem

$$V(m,\varepsilon,\alpha) = \max \{V_x(m), V_c(m,\varepsilon,\alpha)\}$$

- Continuing Firms

$$V_{c}(m,\varepsilon,\alpha) = m + \max_{k,n} \left\{ -pk + \rho \mathbb{E}_{\varepsilon'|\varepsilon} V(m',\varepsilon',\alpha) \right\}$$

subject to

$$m' = \pi_b(k, n; \varepsilon, \alpha) - \tau \cdot \max\{0, \pi_b(k, n; \varepsilon, \alpha)\} + pk$$

$$\pi_b(k, n; \varepsilon, \alpha) = p\varepsilon k^{\alpha} n^{\beta} - wn - wc_f - \delta pk$$

Exiting Firms

$$V_x(m) = m$$

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Entry

- free entry
- large mass of potential entrants
- pay wc_e to draw α and ε

$$wc_e = V^e = \int \int V(0,\varepsilon,\alpha) dH(\varepsilon) dG(\alpha).$$

Kaymak - Schott (UdeM 2018)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Distribution of Firms

Track resources

$$\mathcal{B}(\mathcal{M}) = \left\{ m: m'(m,\varepsilon,\alpha) \in \mathcal{M} \quad \text{for any } (\varepsilon,\alpha) \in (\mathcal{E} \times \mathcal{A}) \right\}$$

Entrants

$$\mu(\mathcal{M}, \mathcal{E}, \mathcal{A}) = M \int_{\mathcal{A}} \int_{\mathcal{E}} dH(\varepsilon) dG(\alpha) \text{ and } m_0 \in \mathcal{M}, \text{ and } 0 \text{ otherwise.}$$

Evolution of firm distribution

$$\Gamma'(\mathcal{M}, \mathcal{E}, \mathcal{A}) = \int_{\mathcal{A}, \mathcal{E}, \mathcal{B}(\mathcal{M})} (1 - x(\varepsilon, \alpha)) d\Gamma(m, \varepsilon, \alpha) dH(\varepsilon'|\varepsilon) dG(\alpha) + \mu(\mathcal{M}, \mathcal{E}, \mathcal{A})$$

Kaymak - Schott (UdeM 2018)

(ロ) (型) (E) (E) E のQC

Households

$$\max_{c,n} \frac{c^{1-\sigma}}{1-\sigma} - \theta \frac{n^{1+\phi}}{1+\phi} \quad s.t. \ c = wn + d + T$$

Kaymak - Schott (UdeM 2018)

22

(ロ)、(型)、(E)、(E)、(E)、(D)、(C)

A stationary recursive competitive equilibrium consists of value functions $V(m, \varepsilon, \alpha)$, $V_c(m, \varepsilon, \alpha)$ and $V_x(m)$, policy functions $k(m, \varepsilon, \alpha)$, $n(m, \varepsilon, \alpha)$, $m'(m, \varepsilon, \alpha)$, and $x(\varepsilon, \alpha)$, a price p, labor supply $L^s(w)$, a measure of incumbent firms Γ and a measure of entrants μ such that :

- $V(m, \varepsilon, \alpha), V_c(m, \varepsilon, \alpha), V_x(m), k(m, \varepsilon, \alpha), n(m, \varepsilon, \alpha), m'(m, \varepsilon, \alpha)$ and $x(\varepsilon, \alpha)$ solve the incumbent firm's problem.
- 2 The free entry condition is satisfied
- 3 The labor market clears

$$\int \left[n(m,\varepsilon,\alpha) + c_f\right] d\Gamma + Mc_e = L^s(w)$$

4 The financial market clears

$$d = \int \left[\pi_b(m,\varepsilon,\alpha) - \tau \cdot \max\{0,\pi_b(m,\varepsilon,\alpha)\} + m - (1 - x(m,\varepsilon,\alpha)) \cdot k(m,\varepsilon,\alpha) \right]$$

6 Government budget is balanced :

$$T = \tau \int \max\{0, \pi_b(m, \varepsilon, \alpha)\} d\Gamma$$

6 The distribution of incumbent firms is stationary : $\Gamma' = \Gamma$.

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

Simplified Model Analysis

Assumptions

- exogenous exit at rate x
- $-c_f=0$
- w = 1
- $N^s = 1$

(ロ) (型) (注) (注) (注) (こ) (の)

Factor Demands

$$\bar{w} \equiv \frac{w}{p} = \beta \varepsilon k^{\alpha} n^{\beta - 1}$$
$$r_{\tau} \equiv \frac{1 - \rho}{\rho \cdot (1 - \tau)} + \delta = \alpha \varepsilon k^{\alpha - 1} n^{\beta}$$

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

25

(ロ)、(型)、(E)、(E)、(E)、(D)、(C)

Output

$$q = \varepsilon^{\frac{1}{1-\gamma}} \left(\frac{\alpha}{r_{\tau}}\right)^{\frac{\alpha}{1-\gamma}} \left(\frac{\beta}{\bar{w}}\right)^{\frac{\beta}{1-\gamma}}.$$
$$\eta_{qr_{\tau}} = \frac{\alpha}{1-\gamma} \qquad \eta_{q\bar{w}} = \frac{\beta}{1-\gamma}$$

K-intensive (L-intensive) firms are more sensitive to r_{τ} (\bar{w}).

Kaymak - Schott (UdeM 2018)

Profits

After tax profits :

$$\Pi_{a}(p,\tau) = (1-\tau)pq(\varepsilon,\bar{w},r_{\tau})\left(1-\beta-\alpha\frac{\delta}{r_{\tau}}\right)$$
$$\frac{\partial\Pi_{a}}{\partial r_{\tau}} < 0 \qquad \frac{\partial\Pi_{a}}{\partial \tau} < 0 \qquad \frac{\partial\Pi_{a}}{\partial p} > 0$$

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

Entry and Market Clearing

- lower taxes reduce (increase) equilibrium prices (wages)

$$V_e = \frac{1}{1 - \rho(1 - x)} \mathbb{E}_{\alpha, \varepsilon} \Pi_a(\overset{+}{p}, \overline{\tau}) = c_e$$

employment shifts towards K-intensive firms

$$\eta_{qr_{ au}} = rac{lpha}{1-\gamma} \qquad \eta_{qar{w}} = rac{eta}{1-\gamma}$$

total effect on employment and industry size is ambiguous

$$c_e + \int n(\overline{p}, \overline{\tau}) d\Gamma = 1/M$$

Kaymak - Schott (UdeM 2018)

Quantitative Question

What was the role of lower corporate tax rates in the decline of the labor share in US Manufacturing?

Approach

- calibrate to 1960s manufacturing industry
- simulate lower corporate tax rate

Today's Assumptions

- inelastic labor supply
- exogenous exit

Quantitative Question

What was the role of lower corporate tax rates in the decline of the labor share in US Manufacturing?

Approach

- calibrate to 1960s manufacturing industry
- simulate lower corporate tax rate

Today's Assumptions

- inelastic labor supply
- exogenous exit

Calibration : Preset Parameters

Parameter	Value	Interpretation	Reason
δ	0.10	depreciation rate	NIPA
γ	0.85	returns to scale	—
ho	0.96	discount factor	annual $r \approx 4\%$
W	1.0	wage	numéraire
au	0.52	corporate income tax	Gravelle (2004)

Kaymak - Schott (UdeM 2018)

(ロ) (型) (E) (E) E のQC

Distribution of Labor Intensity

(ロ) (型) (E) (E) E のQC

Calibration : SMM

Parameter	Value	Targets from 1967	Data	Model
$ ho_{arepsilon}$	0.745	emp. share : smallest 65% of establishments	5.6	5.6
$\sigma_{arepsilon}$	0.195	emp. share : largest 4.25% of establishments	60.1	60.0
$\mu_{arepsilon}$	0.569	average firm size —->	60.5	60.5
β_{min}	0.301	manufacturing labor share	55.6	55.6
Ce	14.50	VA-weighted p50(LS)/median(LS)	88.6	90.5

Distribution of Labor Shares : Model vs. Data

Note.- The joint distribution of labor shares and value added. On the left are results from our model. The figure on the right is taken from Kehrig and Vincent (2017).

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

イロト イポト イヨト イヨト

Impact of Corporate Taxes on the Labor Share

decrease the corporate tax rate to 20%

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

(ロ) (部) (注) (注) (注) (の)()

Impact of Corporate Taxes on the Labor Share

Corporate Tax Rate	52%	20%
Manufacturing labor share	0.556	0.485
Price Level	0.872	0.643
Aggregate Output	1.665	2.173
Employment in smallest 65% of establishments	0.056	0.049
Employment in largest 4.25% of establishments	0.600	0.625
VA-weighted p50(LS)/median(LS)	0.905	0.666
Average Firm Size	60.50	32.0

Kaymak - Schott (UdeM 2018)

The Role of General Equilibrium Effects

Effect	Effect on Labor Share	
Total change drop in r_{τ}	-7.1pp -4.1pp -3.4pp	

Kaymak - Schott (UdeM 2018)

(ロ) (型) (E) (E) E のQC

The Rise in Concentration : Model vs. Data

Note.- The joint distribution of labor shares and value added. On the left are results from our model. The figure on the right is taken from Kehrig and Vincent (2017).

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

イロト イポト イヨト イヨト

Alternative Explanations

Kaymak - Schott (UdeM 2018)

(ロ) (型) (E) (E) E のQC

Rising Markups : $\gamma \searrow$

Span of Control	0.85	0.82
Manufacturing labor share	0.556	0.565
Price Level	0.872	1.055
Aggregate Output	1.665	1.358
Employment in smallest 65% of establishments	0.056	0.10
Employment in largest 4.25% of establishments	0.600	0.48
VA-weighted p50(LS)/median(LS)	0.905	1.04
Average Employment	60.50	51.2

Rising Price Elasticity : $\gamma \nearrow$

Span of control	0.85	0.88
Manufacturing labor share	0.556	0.511
Price Level	0.872	0.666
Aggregate Output	1.665	$\overline{2.300}$
Employment in smallest 65% of establishments	0.056	0.017
Employment in largest 4.25% of establishments	0.600	0.779
VA-weighted p50(LS)/median(LS)	0.905	0.656
Average Firm Size	60.50	71.1

Discussion

- Corporate tax cuts are responsible for a third of the decline in the labor share in US manufacturing.
- Endogenous exit
- Industry elasticity of substitution
- Alternative explanations
- Empirical US

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

K-biased technical change?

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

(ロ) (型) (E) (E) E のQC

L-biased technical change

Kaymak - Schott (UdeM 2018)

Labor Share and Corporate Tax

43

(ロ) (型) (E) (E) E のQC

References

- AUTOR, D., D. DORN, L. F. KATZ, C. PATTERSON, J. VAN REENEN, ET AL. (2017) : *The fall of the labor share and the rise of superstar firms*, National Bureau of Economic Research.
- DE LOECKER, J. AND J. EECKHOUT (2017) : "The rise of market power and the macroeconomic implications," Tech. Rep. 23687, NBER working paper.
- ELSBY, M. W., B. HOBIJN, AND A. ŞAHIN (2013) : "The decline of the US labor share," *Brookings Papers on Economic Activity*, 2013, 1–63.
- HOPENHAYN, H. AND R. ROGERSON (1993) : "Job turnover and policy evaluation : A general equilibrium analysis," *Journal of Political Economy*, 101, 915–938.
- KARABARBOUNIS, L. AND B. NEIMAN (2013) : "The global decline of the labor share," *The Quarterly Journal of Economics*, 129, 61–103.
- KEHRIG, M. AND N. VINCENT (2017) : "Growing productivity without growing wages : The micro-level anatomy of the aggregate labor share decline," Mimeo.
- LAWRENCE, R. Z. (2015) : "Recent Declines in Labor's share in US Income : a preliminary neoclassical account," Tech. Rep. 21296, NBER working "900 Habor Share and Corporate Tax