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Predictive Tests for Structural Change
with Unknown Breakpoint*

Eric Ghysels’, Alain Guay*, Alastair Hall™

Abstract / Résumé

This paper considers predictive tests for structural change in models
estimated via Generalized Method of Moments. Our analysis extends earlier
work by Ghysels and Hall (1990a) by allowing for the instability to occur at an
unknown point in the sample. We analyze various statistics based on continuous
mappings of the sequence of predictive tests calculated for a set of possible
breakpoints in the sample. The limiting distribution of these statistics is derived
under both the null hypothesis and local alternatives. Percentiles are reported
Jor the distribution under the null. A side product of our analysis is that we can
illuminate the power properties of the predictive test and also compare its
properties to those of the Wald, LR and LM tests for parameter variation. We
study those power properties both via local asymptotic analysis and Monte
Carlo.

Cette étude généralise la procédure proposée par Ghysels et Hall
(1990a) pour tester le changement structurel pour des modeles estimés par la
méthode de moments généralisée. Nous ne supposons plus le point de rupture
comme étant connu et proposons plusieurs statistiques prédictives avec changement
structurel inconnu. Comme les distributions asymptotiques sont non standard, nous
fournissons les valeurs critiques. Finalement, nous étudions la puissance des tests
et faisons des comparaisons avec des tests du type Wald, LM et LR.

Key Words: moment conditions, structural change, GMM.
Mots-clés :  conditions de moments, changement structurel, méthode des moments
généralisée.
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1. INTRODUCTION

There is a perennial interest in testing whether parametric econometric models
are invariant through time. The vast literature on testing for structural change has paid
most attention to the linear regression model while only a handful of tests are available
for nonlinear dynamic single and multiple equation models. Advances in econometric
theory over the last decade have cleared the horizon to address the more challenging
task of testing for structural change in dynamic nonlincar models. Andrews and
Fair (1988) considered the problem of testing parameter constancy when the sample
can be split at some known breakpoint into two subsamples governed by parameter
values equal under the null but different under the alternative. They proposed Wald,
likelihood ratio-type (LR) and Lagrange multiplier-type (LM) tests and showed that
under some weak regularity conditions such tests have standard asymptotic
distributions.  These developments were made in the context of the Generalized
Method of Moments (GMM) estimator which in its generic form covers a large class of
estimators for a wide variety of nonlinear dynamic models.! Ghysels and Hall (1990a)
proposed a predictive test for structural stability. In this approach, parameter estimates
from a first subsample are »used to evaluate moment conditions in the second
subsample. The essential idea behind such tests is that the predicted moment
conditions should be statistically insignificantly different from zero when there is no
structural change. The null and alternative hypotheses of these tests are formulated in
terms of the structural stability of the moment conditions, rather than the parameter
variation employed by Andrews and Fair (1988), and so have different power properties
to Wald, LR and LM tests. Intuition suggests that neither type of test dominates in all
situations and so it is of interest to apply both in applications.

One drawback with all these tests is that they assume the breakpoint is known.
While in some cases this may be reasonable, such as exploring the impact of specific
economic events like the 1973 oil shock, in many cases one may wish to test for
structural stability over all points in the sample. Andrews (1993) proposed a procedure
for testing parameter stability when the breakpoint is unknown. His strategy is to
consider the Wald tests, say, for a set of possible breakpoints and base inference on the
supremum of these tests. Andrews shows that this "Sup-Wald" statistic converges to

1 See Hansen (1982), Gallant and White (1988) and the recent surveys by Hall (1993),
Newey (1993) and Ogaki (1993) for detailed discussion of GMM estimation. It should,
parenthetically, be noted that the LR-type test is only appropriate under more restrictive
conditions which are not satisfied in many GMM applications.



the supremum square of a standardized tied down Bessel process under the null
hypothesis of parameter constancy.2 This extension takes the statistical theory outside
the conventional framework in which the Wald test is asymptotically optimal because a
nuisance parameler, the breakpoint, is not present under the null hypothesis. Therefore
the Sup-Wald statistic has no known optimality properties. Andrews and
Ploberger (1994) and Sowell (1994) have considered the construction of optimal tests
for parameter variation which leads to tests of an average exponential form.

In this paper, we adopt a similar approach to developing predictive tests for
structural change at an unknown breakpoint. Using results from Andrews (1993) and
Sowell (1993) it is shown that under the null hypothesis the predictive test converges to
the sum of the square of a standardized tied down Bessel process and the square of a
standardized Bessel process. This structure reflects a decomposition of the statistic into
a test for parameter variation and a test of the stability of the overidentifying
restrictions. ‘This enables us to clarify the relationship between the predictive and Wald
tests. We also derive the distribution of the predictive test under local alternatives
which helps to further illuminate its properties. These results are used to characterize
the asymptotic behavior of a sup-predictive test and versions of the statistic based on
the average exponential form analysed by Andrews and Ploberger (1994) and
Sowell (1994). In the special case where the number of moment conditions equals the
number of parameters, the various predictive tests proposed in this paper are
asymptotically equivalent to the analogous Wald tests. In this case the percentiles of
the limiting distributions can be obtained from Andrews (1993) and Andrews and
Ploberger (1994). We present percentiles of the limiting distributions for situations in
which the number of moment conditions exceeds the number of parameters.

The paper is organized as follows : Section 2 contains the main theoretical
results. Section 3 presents the asymptotic local power of the tests. Section 4 covers a
simulation study of finite sample properties. All proofs are relegated to a mathematical

appendix.

2 A similar result applies for the Sup-LR and Sup-LM (ests. In the remainder of this introduction
all discussion of the Wald test, or functions thereof, similarly applies to the LR and LM tests.



2. TESTS STATISTICS AND THEIR ASYMPTOTIC DISTRIBUTION

In this section, we propose predictive tests with unknown breakpoint and discuss
their asymptotic distribution. The details of the proof and the required regularity
conditions appear in the Appendix. We consider the class of GMM estimators which
subsumes many standard estimators such as quasi-maximum likelihood, certain
semi-parﬁmetric procedures, as well as least squares and IV procedures. In a general
context, the GMM estimator is based on a set of moment conditions :

@1 Elf(x, 6)]=0,

where f(-) is a (q x 1) vector of continuous differentiable functions of (xl, 90) with
f(-) € RY; X, is a (s X 1) vector of random variables; 90 is a (p x 1) parameter vector

contained in © c RP. This specification follows the usual practice of assuming that the
moment condition is valid throughout the whole sample. If this assumption is invalid
then the model is said to be structurally unstable. There are various ways in which one
could characterize such structural instability. Andrews (1993) considers the situation in
which the parameter vector at which the moment conditions are satisfied is indexed by
t, 6t say. This approach allows a wide variety of models against which it is difficult to

design a single test. Consequently, he focuses attention on two homogenous
subsamples, i.e. Gtzf)l for t=1,2,..aT and 6t=92 for t=xT+1, ...,T where

ne I1c(0,1). The resulting tests are 'designed to have power against the explicit
alternative of a single breakpoint although, as shown by Andrews (1993), the tests have
power against a much wider class of alternatives. The tests we consider are similarly
designed to detect situations in which there is a single breakpoint in the sample.
However our characterization of structural instablity is different. The predictive tests
proposed by Ghysels and Hall (1990a) are formulated in terms of changes in the
moment conditions without necessarily attributing such changes to the parameter
vector. To present the null and alternative hypotheses of the predictive tests we need
the following notation. Let fl(-) denote f(-) for the observations Tl(n) ={t=12,..,

T} and f2(-) denote f(-) for the remaining observations T2(7c) ={t=aT+1, .. T}

The null and alternative hypotheses are then:

(2.2a) H0 : E[fl(xt’ 60)] = E[fz(xt, 90)] =0



(2.2b) H, E[fl(xl, 60)] =0, but E[fz(xl, 90)] #0

The idea behind the predictive test is based on evaluating the moment conditions for
the observations in the second subsample, T2(7r), at the parameter estimators based on

only the first subsample, T, (7). If the null hypothesis is correct then these estimated

moment conditions should be approximately zero. When the breakpoint & is known,
then one can use the test proposed by Ghysels and Hall (1990a). In the remainder of
this section we consider the generalization of this test to the case where the breakpoint
is unknown. To proceed with the presentation of the tests, let us first present the
required GMM estimators :

Definition 2.1 : The set of GMM estimators {6,1,(75)} is a sequence of random vectors

such that :

R LT . LT
GT(E) =argmin (zT)" X f(x,0)' W, . (@#xT) X f(x,0),
=1 " =

A
where W’I‘ is a random symmetric matrix which may depend on =w. Following

Hansen (1982), the optimal weighting matrix WT is defined to be the inverse of :

. T
Ly

(2.3) QO = lim Var
JTt

T oo

| f(x ; 90)} .

This matrix can be consistently estimated by a variety of procedures, see inter
alia Gallant (1987), Newey and West (1987), Andrews and Monahan (1992).
Whenever the covariance estimator involves data from the first subsample, we denote it

A
by Sl(yr). Likewise, when data starting with observation #T + 1 are used, we shall
A

denote the estimator Sz(n). Equations (A.3) and (A.4) in the Appendix provide generic
formula for both estimators. We now proceed with the definition of the predictive test
statistics as a function of the unknown breakpoint 7 ;

A-l T
v, (m)

Fa%
% f(x,0.(n)],
aT+1 2 U1

T ,
(2.4) PR (m)=|(T - 2 s £(x, /éT(n')) (T - 7z 2
nT+1 :




A
where V2(7r) is a consistent estimator of :

V(1) = S,(m) + dF,(m) [F,(n)' S} (m) F (0] F(n),

and d = I ;t T while the matrices Fi(n) appear in the Appendix as equation (A.2). A

first theorem establishes weak convergence of the PRT(n) process indexed by 7.

Theorem 2.1 : Under the null hypothesis HO in (2.2a) and Assumptions A.l through

A.13 of the Appendix, the process PR indexed by = for a given set TT whose closure -
lies in (0,1) satisfies :

(2.5) PRT(TC) 3 BBH(n) + BMH(n)

where
[BHl(n) ~ 7tBHl(1)]'[BH1(7t) - 7rBH](1)]
n(l - &) ’

BBH(n) =

[BH,(1) - BH,(m]'[BH,(1) - BH,(®]

BMH(n) = T

and BHi are vectors of independent Brownian motions of dimension p when i =1 and

q-pwheni=2,

Hence, the asymptotic distribution is a squared p-dimensional standardized
tied-down Bessel process plus the square of a q - p dimensional standardized Bessel
process. When the dimension of the orthogonality conditions equals the dimension
of 6, the asymptotic distribution is only a function of a squared standardized tied~down
Bessel process. In this case, the predictive test based on PRT(n) has exactly the same

asymptotic distribution as the Wald, LR and LM tests developed by Andrews (1993).
If q > p, the extra term corresponds to a test of the stability of the overidentifying
restrictions.



The result in Theorem 2.1 enables us to proceed with the formulation of several
test statistics. The first statistic is the sup-predictive test

(2.6) SupPRT = sup PRT(n)
nell

This approach amounts to basing inference on the breakpoint which maximizes the
evidence against structural stability. Andrews (1993) proposed a similar approach
based on the Wald, Lagrange Multiplier and Likelihood Ratio type tests. While this is
an intuitively reasonable strategy for testing for structural instability, there is no formal
justification in the sense that the tests have no known optimality properties; e.g. see
Andrews and Ploberger (1994). To derive an optimal test one must specify a
probability distribution on both the breakpoint and the change in the moment conditions
which indicate the relative importance of various departures from the null hypothesis.
Andrews and Ploberger (1994) have addressed this issue in the context of maximum
likelihood estimation and Sowell (1994) generalizes this analysis to GMM estimators.
In this paper, we consider two continuous mappings of the predictive tests which are
motivated by Andrews and Ploberger (1994) and Sowell (1994). These are :

@7 PRY = [ PR (md)(m)
I
(28)  ExpPR, = log{ Ijl exp[0.5PR (m)]d)(m))

where J(m) is the probability density function specified for m. The PR%V statistic

represents the average predictive test over m and is anticipated to be powerful for
alternatives close to the null; whereas ExpPR.. is anticipated to be powerful against

distant alternatives. The distributions of these statistics are presented in Theorem 2.2.
Theorem 2.2 : Under the conditions of Theorem 2.1, we have

SupPRT 3 sup {BBH(n) + BMH(n)},
nell

PRY 2 ]jl' [BBH(x) + BMH(m)]d)(m),

ExpPR..  log( rjl exp[(BBH(x) + BMH(n)) / 2]d1(n)}.



In the case where p=q these distributions are the same as those derived by
Andrews (1993) and Andrews and Ploberger (1994) for the analogous Wald, LM and
LR based tests. Therefore percentiles for our tests when p =@ can be obtained from
the appropriate tables in these earlier papers. We tabulate the distributions in
Theorem 2.2 for the case where q > p; for the PR,‘I‘,V and ExpPRT statistics we follow

Andrews and Ploberger (1994) and set J(x) equal to the uniform distribution on I1. The
tables with these critical values are relegated to the appendix. All calculations were
performed using GAUSS 3.0 with 10,000 replications.

3. ASYMPTOTIC LOCAL POWER

The predictive tests discussed in the previous section are designed to test for a
single breakpoint at which the value of the moment condition changes. However, they
have power against a variety of other alternatives as well. In this section we develop

the formal asymplotic arguments to support this claim.

Following Andrews (1993) we adopt a very general specification for the
sequence of local alternatives to our H()' In this section we assume

Assumption 3.1 : The moment conditions satisly

sup || T2 ng(x 0) -1 (m | =0 (1)
el t=1 AR _Op ’

mell
sup || T2 5 f(x, 0) - p(m) || =0 (1)
mell =xt+l L0 2 p

Notice that this sequence of alternatives allows for violation of the moment conditions
in both subsamples. If we put more structure on the problem and assume that

BIf(x 6] = nWTYT? then

i3 1
@ = [ ne)ds,  pym = I n)ds
. T

0



as discussed in Andrews (1993). It is of interest to specialize these results further to
the case of a single breakpoint at unknown time 7. Suppose the value of the moment
conditions is 171 # 0 for t = nOT. This can be captured within our framework by putting
(s) =nl(r 2 no) from which it follows that ul(ﬂ) = max(mw - Ty 0)n and

uz(n) =[1 - max(nx, n())m.

We now present the limiting distribution of PRT(ﬂ) under the class of alternatives

in assumption 3.1.
Theorem 3.1 : Under assumptions 3.1 and A.1-A.13 given in the appendix, we have

. * . * * 1 *
PRT(E) 3 Jp(ﬂ) ] p(ﬂ) + Kq_p(”) Kq-p(n)

where
N [BHl(ﬂ) - nBHl(l)] a - m 12 n - 12 n
Jp(n): S VG - [ - ] H S (m) + [M)] H S, (m)
o _BH,(D - BH, (™) + B8y ()
q-p (1 _ n)1/2

and H' = [H1 Hz] is a matrix whose columns form a set of orthonormal vectors with

Hl, H2 of dimensions p x q, (q - p) x q respectively which is defined in the Appendix.

Notice that in the case where p = q the distribution in Theorem 3.1 reduces to the
one presented in Andrews (1993) Theorem 4. It is interesting to note that the first
component of the predictive test, which can be viewed as testing the constancy of the
parameters over the sample, is sensitive to structural instability in fl(-) and fz(')'

Whereas the second component, which tests the constancy of the overidentifying
restrictions, is sensitive to instability in fz(') alone.



Before examining the properties of the tests proposed in this paper, it is
interesting to use Theorem 3.1 to learn about the power of the predictive test when the
breakpoint is known. If & is fixed then PRT(n) has a X(zl with noncentrality parameter

equal to

3.1 constant[J;(n)]2 + constant[K;;_p(n)]2

where constant[ -] denotes the nonrandom part of the the random vector in the brackets.
We use this result to examine the power of the test in two situations. First consider the
casc where the instability is driven by parameter variation. Following Andrews (1993),

we assume E[f(x, 8 + n(U/T )/Tm)] = and so

/4 1
p,(m) = -F (f) NEs)ds,  uy(m = -F [ n(s)ds
n

172

Substituting these representations into (3.1) and noting that H2 ST F=0,3it can be

shown that the predictive test has exactly the same noncentrality parameter as the
Wald, LR and LM tests proposed by Andrews and Fair (1988). However the predictive -
test has q - p more degrees of freedom and so is less powerful if q >p. This is
intuitively reasonable. The Wald, LR and LM tests are designed to have power against
parameter variation and under this alternative there is no additional information in the
overidentifying restrictions. We now turn to the situation where there is a single

breakpoint , and examine the power of the test against structural instability either

before or after the break. For this discussion assume the correct breakpoint is chosen.
If the moment condition (2.1) is only invalid before the break, i.e. prior to nOT, then

the noncentrality parameter of the test is

-z
I]C[)1 = I:___T_c_(_)gjl 1]-3-1/2 II; IIlS-llzn

3 This follows from equation (A7) in the appendix because the colummns of H form an
orthonormal set.
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Whereas if the moment condition (2.1) is only invalid after the break the noncentrality
parameter is

T

nep, = [TT’EE] n'S

-1/2 12 ]/27

1 - t '1/2 1 -
H1 HIS n+1nSs HZHzS ]

The relative magnitudes of these two noncentrality parameters depends on 7, and the

moments of various functions of the data. However, note that if n0=0.5, then

ncp, 2 nep,. In other words, the predictive test has more power against structural
instability after the break under these conditions.4 We also observe that nep, equals

the noncentrality parameter of the Wald, LR and LM tests. Therefore if g >p the
predictive test is less powerful than the other tests when the moment conditions are
only invalid prior to the breakpoint. This follows because instability in the first
subsample only affects the test via the parameter estimator Ié,l.(no). However if the

moment conditions are invalid in the second subsample alone then the predictive test
can be more powerful. This is illustrated in Table 3.1. For simplicity, we consider the

S-1/2

case where H = Iq, nN=¢ 1q where 1q is a q x 1 vector of ones. In this case, the

predictive test converges to a xle (q&2 ) distribution and the Wald, LR and LM tests
converge to a xﬁ(pez) distribution, where xz(b) is a xz distribution with a degree of

freedom and noncentrality parameter b. From Table 3.1, it is clear that the predictive
test can be much more powerful aSymptotically. For example, if q= 10, p=1 and
€ = 1.5, then the predictive test has power equal to .93, while the other three tests only
have power equal to .32. The Monte Carlo results reported in the next section will
reinforce this finding. Taken together, these properties of the predictive test suggest it
is desirable to perform the tests in two ways : using the parameter estimators of the first
subsample to evaluate the moment conditions in the second subsample and using the
parameter estimators of the second subsample to evaluate the moment conditions of the
first subsample. The construction of the latter test is analogous to that of the former
and its distribution is easily deduced from Theorem 3.1; in particular note this second
predictive test has the same distribution under the null hypothesis.

4 Ghysels and Hall (1990a) show that the predictive test has the same power against structural
instability either before or after the break. This can be reconciled with the results in this paper
because Ghysels and Hall (1990a) concentrate on instability caused by parameter variation alone
in which case the second term in nep, is 0.
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Table 3.1 : Probability a x(ke”) random variables

exceeds the 95U percentile of the xlzc distribution

1 2 3 4 5 6 7 8 9 10
e= .5 08 .09 .10 .11 .1 12 a3 13 14 14
e=1.0 17 22 27 32 36 40 44 48 51 53
e=15 32 46 57 66 74 80 .84 88 91 .93
£=2.0 S50 71 84 91 95 97 99 .99 1.00 1.00
£=25 1 90 96 .99 100 100 1.00 1.00 1.00 1.00

One can derive the limiting distributions of the SupPRr, PR;{V and ExpPRT by

applying the appropriate continuous mapping to the distribution in Theorem 3.1; for
brevity exact formula for these limiting distributions are omitted. However, we do
explicitly consider the power properties of these predictive based tests. For this
discussion we restrict attention to the class of alternatives

(32)  Elf(x, 0)1 =& nw Ty T

Corollary 3.1 : Under the conditions of Theorem 3.1, equation (3.1) holds with 1(-) not
equal to a constant vector almost everywhere on Il then

lim lim P[SupPRT >c (] =1,

lim lim P[PR.'FV >c (@] =1,
5—.)00 T ¢

lim lim P[ExpPRT > cexp(a)] =1,

400 o0
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where csup(a), cav(a) and cexp(a) are the 100(1-o) percentiles of the limiting

distributions of the SupPR., PR,?V and ExpPR.. tests given in Theorem 2.2.

Therefore all three tests have nontrivial power against alternatives for which the
expectation of the moment condition is not constant over the sample. This result
follows from Theorem 3.1 and Corollary 2 of Andrews (1993).

4. FINITE SAMPLE PROPERTIES - A SIMULATION STUDY

We now turn our attention to the finite sample properties of the exponential and
supremum predictive tests. The design of the simulation study will emphasize the
difference between testing for structural change through moment conditions versus
through paramelers as in Andrews (1993). We present the simulation design first and
discuss the results thereafter.

Consider a data series x_with a sample of size T available. The data are

t
generated by the following equation :

4.1 X = Bxl_l te + 0y €,

where € is i.i.d. N(0,1). We will be interested in comparing two different scenarios :
(A) the data generating process is AR(1), i.e., 0, = 0 Vt and (B) the data generating

process is AR(1) for half the sample and, for the remainder of the sample, it is fixed
parameter ARMA(1,2), with a zero restriction on the first lag of the MA polynomial
and

(4.2)

{() ire<s12T
o, =
2t

a,#0 ift>12T

On first appearance, we are in a typical situation of structural change, in this case

involving the MA parameter - However, the next element will emphasize the

differences which may occur between testing for structural change through moment
conditions and parameter estimation. Namely, the econometrician estimates only
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the parameter 8 as being the "parameter of interest”. Such a situation is indeed not
uncommon. For instance, many applications of GMM involving Euler equations entail
estimation only of a small set of parameters which usually have an economic
interpretation but do not fully describe the DGP. Our setup of an ARMA(1,2) process
with only the estimation of the AR parameter is a simplified example of this commonly
encountered situation. The estimator for the parameter 6 is based on the following
moment function :

43) £, 0)=0x - 0x ) (x X )

Under the null hypothesis, which is assumed to be scenario (A), the lagged

dependent variables X, and X, , are valid instruments. It should also be noted that one

1 2

has a situation of one overidentifying moment condition in (4.3). From the discussion
in scctions 2 and 3, we know that the Wald, LM and LR tests on the one hand and
predictive tests on the other will have different power properties. Under scenario (B),
which is chosen here as a specific class of alternatives, neither X, | Dot X, , are valid

instruments for half of the sample. The LR, LM and Wald tests for structural change
discussed in Andrews (1993) and Andrews and Ploberger (1994) will be based on
statistics involving parameter estimates of 6 over the entire sample or subsamples.
In our design, 6 will be estimated consistently during part of the sample only. One
should observe though that the parameter 6 actually never changes. Instead, the
validity of the orthogonality conditions are affected through the design of the DGP.
In particular, using the notation of the previous section :

E[fl(xl, O =0 fort=1,..,12T,
E[fz(xl, Ol#0 fort=12T+1,..,T.

This design stresses in a simple way the differences between structural change
tests proposed here and those considered by Andrews, and Andrews and Ploberger.
Obviously, the latier tests will have power because of the inconsistent estimation of 6
during part of the sample which will be viewed as a structural change.
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In Table 4.1, we report results from a Monte Carlo study involving a total of
eight test statistics for twelve parameter settings in equations (4.1) and (4.2) and two
samples sizes T = 100 and T = 200. For the autoregressive parameter, we took values
0=0, 0.5 and 0.9. Size properties of the statistics were simulated by scttingb?2 =0

in (4.2). The power properties were examined with nonzero values of 52. They were

set equal to 0.5 as well as -0.5 and -0.9. For the Wald, LR and LM-type tests, we
considered both the supremum version appearing in (2.6) and the exponential one
appearing in (2.8) (replacing in both formula PR by the applicable test statistics).
Likewise, for the predictive tests we also reported both versions. The figures reported
in Table 4.1 are based on 1,000 simulations with 7w e [.15, .85].

The top panel of Table 4.1 reports the size properties in small samples since in

all cases 6?2 = 0. There are no important size distortions, sometimes some of the tests

are undersized but this seems only to be a minor problem. Let us turn our attention to
power properties. They clearly confirm the calculations reported in Table 3.1 where it
was shown that the local asymptotic power of the predictive type tests can be
remarkable better. I noted, with say 6 = 0, i.e., no autoregressive part and 52 =-05

or - 0.9, we notice that the Wald, LR and LM tests have power in the range of 10% to
20% with T = 200. For the predictive test, it is between 80% and 100%. With 6 =0
and 52 = (.5 the difference is not so dramatic, yet it is still up to 45%. When the AR

coefficient increases the advantage in power of the predictive test reduces, although it
remains the most powerful test for this particular setup regardless of the parameter
settings and sample sizes.
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Table 4.1 : Size and Power properties of Supremum and Exponential Tests
for Structural Change with Unknown Breakpoint (5% Critical Value)

xt=9xH+8[+a et_2t>1/2T

t=6xt_1+£tts1/2T

2

0 a, T | Wald LR LM PR

| Sup Exp Sup Exp Sup Exp Sup Exp
Size Properties
0 0 100 3.5 4.6 2.8 4.1 22 3.9 1.5 3.6
200 3.8 52 3.5 4.7 33 43 2.7 4.5
0.5 0 100 35 5.0 3.3 4.6 2.5 43 2.5 3.5
200 4.1 5.0 39 5.0 33 4.6 2.6 44
09 0 100 4.8 4.6 4.2 4.1 3.4 3.8 3.2 3.6
200 43 54 3.6 4.8 34 43 3.0 4.5
Power Properties
0 0.5 100 11.7 13.6 11.0 133 10.6 11.9 23 21.0
200 13.7 149 12.7 14.0 14.1 15.0 61.8 83.2
~0.5 100 0.9 0.8 1.0 0.9 10.6 0.6 13.8 40.6
200 1.4 1.7 1.4 1.5 1.3 1.5 81.0 924
-0.9 100 0.5 1.0 0.7 1.1 0.5 0.7 44.7 79.7
200 04 1.1 0.7 1.1 0.6 1.0 98.7 1000
0.5 0.5 100 8.2 116 8.4 11.6 7.8 9.9 1.1 72
200 11.8 16.2 11.8 16.2 129 15.7 18.7 39.7
-0.5 100 6.5 8.7 72 8.9 6.7 7.7 18.6 38.6
200 11.0 149 11.6 159 104 13.8 76.5 88.6
~-0.9 100 1.6 127 8.7 14.1 6.4 109 47.6 774
200 17.9 259 20.1 219 15.6 21.8 98.7 99.7
0.9 0.5 100 1.9 3.1 24 3.1 1.5 1.3 0.5 1.0
200 3.5 4.7 3.7 5.0 2.7 24 1.6 4.1
-0.5 100 27.6 309 28.3 31.2 279 27.6 312 35.0
200 55.9 58.7 56.7 60.0 55.0 54.5 68.1 69.8
~-0.9 100 65.9 72.8 68.0 74.4 63.8 69.2 78.4 86.7
200 94.9 96.4 95.6 97.0 94.4 95.6 99.9  100.0
Note : In all computations 7 € [.15, .85].
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APPENDIX

In this appendix, we describe the set of regularity conditions used to derive the
asymptotic distribution of the tests. Next we present the proofs of Theorems 2.1
and 3.1, followed by tables with critical values of the asymptotic distribution.

1. Regularity conditions

Assumption A.1 : The estimator is based on the argument (2.1) where f is a RY-valued
function of orthogonality conditions.

Assumption A.2: The true parameter vector 00 is an element of the parameter
space © c RP,
Assumption A3 : (O, o) is a separable metric space.
Assumption A4 : The function f(xl, 6) is Borel measurable for each 6 € O.
We now list a set of regularity condition to obtain weak convergence of the

GMM estimators /é,l,(ﬂ), indexed by =z and defined in Section 2, to a function of

Brownian motions. The main distributional results will hold under two alternative
assumptions regarding the stochastic process X, Following Hansen (1982), one can

impose stationarity and ergodicity conditions or else, as in Gallant and White (1988)
and Andrews (1993), one can also consider a setup with conditions on a triangular array

of random variables Xpp Assumptions A.5 through A.13 are taken from

Andrews (1993), who provides a complete discussion.
Assumption A.5 : The process X, is stationary and ergodic.

Assumption A.6: The {th :< T, T21} is a triangular array of X-value random

vectors that is L°-near epoch dependence on a strong mixing base
{yTl tt=..0,1,...;T>1}, where X is a Borel subset of Rk, and {'1T Z} Koy - T=1}

is tight on X.5

5 For a definition of LP-near epoch dependence and tightness, sece Andrews (1993, p. 830). Tor a
presentation of the concept of near epoch dependence, we refer the reader to Gallant and
White (1988) chaps. 3 and 4.



Assumption A7 : For some r 2 2, f(th,

RP-valued random vectors that is L2-near epoch dependence of size -1/2 on a
strong mixing base {yTt tt=..,0,1,.;T>=1} of size -r/(-2) and sup

E || £ g,

17

O)|" < .

Now, we defined the following matrices indexed by 7 :

(A.D)

(A.2)

(A3)

(A4

T A
fl(n)z-‘ﬂ— " i, B andf(n)—T v 2 ¥ 1f(xt,0(7r)),
f =L gTm 08 f 1 g O ¢ (x.,0
1(75) =T 30 I(X 9(75)) and (75) _T-ﬁ 5@‘ (X (m)),
§ (m) L fl(gT) Ean( T, K)(f(x,0(m) -T, (m)(E(x, ,6(m)-T (m))'
) =~ T, x,0(m)-T, (R)(f(x ,,0(m)-f (1)),
1 nl k=-L(7T) 1 t 1 -k 1
Sm=prz L T -, 0x,0m)-T,m)

k=-L(nT) T+l

(1(x, . 6(m) -T, (D),

where ?)(7:) = /(\)T(n) defined in section 2.

Assumption A.8 : Var (~—1— %
JT

matrix S.

Tn f(

A p
Assumption A.9 : sup__py || 6(m) - 6_ || = 0 for some 6 in the interior of 0.

: p
Assumption A.10 :sup 1 |l \%/(n) - W(m) || -0 for some gxq matrices W(n) for

which sup 1 || W(m) || < ee.

6):t <T,T21 is a triangular array of

t<T,T21

Xre 0) - #S, Yr € [0,1] for some positive gxq
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We define :
T
—1im L ) gXp
(A.5) F= 'lrj.? T ? EW f(th, 60) e RV,

Assumption A.11 : F(n)' S'l(fc) F(r) is nonsingular Vr e TT and has eigenvalues bounded

away from zero.

Assumption A.12 : f(th’ 0) is partially differentiable in 6 € @0 ¥x € X, where @0 is
some neighborhood of 60, b%rf(th, 0) is continuous in (x, 8) on X x @0, and

1+€

. 1T 0
lim sup.._ X7 Esupg o | 57 fCxpp 6) | < for some € > 0.

1 Tr

Assumption A.13 : limT_’oo T 21 E ngf(x,n, 0) exists uniformly over mwe Il

equals nF. Vr e I1
2. Proof of Theorem 2.1

A A
We denote Gl(n) as the estimator of 90 for the first #T observations and 92(7t),

the estimator for the remaining subsample (aT + 1, ..., T). From Theorem 1 of
Andrews (1993) :

JTO, (1) - 8) 3 () S @WFm) ! Fw' s B,

-172

JTO,m - 0) 3 25 (F@ S (@ F)' By s™%m B(1) - B),

where B(m) is a p-vector of independent Brownian motions on [0,1] and 2 denotes
weak convergence as defined by Pollard (1984).
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A -
A mean value expansion for the functional f2 evaluated at 91 yields :

T T
(A6) —1 % fz(?al):———-l——— 5 £00)+
JT = 7T) aT+1 JT = 2D aT+1 < °

'11
1 o A2 )
L i @ d"JyTn(o, - 6,).

In premultiplying by y1-7 S'l/z, we obtain that :

T |
L2 5 £@®)+B)-BMm - [Q—'—l‘l] s12gE stTE ! F s BW).
JT 7T+1 T

We now decompose the matrix of the projection spanned by O T
Sowell (1993) namely :

a7 SPrEstelrs?-man,
where H H' = Iq and
_[Ip0O
A= [ oo ]

It follows that :

.
L By 2B - B [ﬁ——ln ]HAHB(n),

and premultiplying by H yields :

e g iy ~(BH,(m) - nBH ()/x
T o 2907 BEM) - BH, (M) |

where BH1 and BH2 are vectors of independent Brownian motions of dimensions p and

q - p respectively.
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Since, H et S are full rank matrix, then PR(x) equals :

T . T
(A8) |——Hs? ¥ fz('él) ms 2 9s 2 gL _pus'? fz(?al) .
T=7T) AT+1 ) AT+1

some algebra yields that :

A9 ESV2 s gyt [F, 0|
0 I
(q-p)

then, we obtain the desired result ;

[BHl(n)—chH1 (HY] [BHl(n)—nBHl(l)]
(1 -m

PR(7) 2 +

[BH,(1)-BH,(m)] [BH,(1)-BH,(m)]
(I-m) i

3. Proof of Theorem 3.1

From (A.6) it follows that

T
V2512 ¢ fz(?)l) 3 HB(1) - HB(m) + HS/% 1, () - dHE'AH[B(n) + SRETNE
T

The result then follows directly from (A.7), (A.8), HH‘AH-—-H1 and the symmetry of the
distribution of BH, () - x BH, (1).



21

Table A.1 : Critical Values of Supremum Test for 7 € (.20, .80)

dimq-p
11.02
1 12.68
16.19

13.48
2 15.31
19.47

15.35
3 17.28
21.64

17.28
4 19.37
23.75

19.09
5 21.26
25.94

20.78
6 22.93
27.41

22.56
7 24.72
29.77

24.00
8 126.32
31.22

2

13.67
15.41
19.53

15.63
17.58
21.43

17.47
19.50
23.68

19.26
21.30
25.86

20.97
23.08
27.82

22.86
25.16
30.28

24.50
26.80
31.41

26.00
28.20
33.18

3

15.97
17.87
22.15

17.80
19.76
24.19

19.51
21.61
26.36

21.26
23.48
28.16

23.06
25.54
30.95

24.42
26.68
31.46

26.26
28.60
33.40

27.92
30.33
35.27

dim p

4

18.10
20.07
24.33

19.78
21.97
26.34

21.53
23.53
28.12

23.29
25.54
30.35

24.67
27.00
31.83

26.27
28.58
33.50

28.03
30.44
35.24

29.52
32.09
36.90

Note : First figure is 10%, followed by 5% and 1%.

5

19.79
21.93
26.10

21.65
23.90
28.10

23.42
25.65
30.78

25.14
27.34
32.39

26.32
28.99
33.03

28.03
30.45
35.68

29.71
32.15
37.64

30.81
33.32
38.23

6

21.71
23.79
28.32

23.54
25.76
30.24

24.98
27.22
32.09

26.66
29.28
34.28

28.12
30.43
35.25

29.95
32.46
37.78

31.29
33.79
39.42

32.54
35.21
40.78

7

23.51
25.70
30.71

25.20
27.43
31.96

26.93
29.33
33.78

28.15
30.45
35.53

29.85
32.27
36.85

31.34
33.81
39.26

32.75
35.36
40.48

34.53
37.16
42.21

25.33
27.69
33.87

27.06
29.42
34.33

28.58
30.91
36.26

29.78
32.28
37.91

31.33
33.77
38.56

32.86
35.56
40.63

34.50
37.23
42.70

35.81
38.71
44.18
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Table A.2 : Critical Values of Supremum Test for 7 € (.15, .85)

dimq-p
10.09
1 11.92
15.75

11.99
2 13.94
17.87

14.94
3 17.10
21.91

17.26
4 19.58
24.61

19.11
5 21.58
27.51

21.14
6 23.64
29.24

23.19
7 25.68
31.38

24.71
8 27.47
32.98

11.89
13.59
17.50

14.81
16.79
21.67

16.80
19.20

23.56 -

18.80
21.32
26.55

20.80
23.55
28.96

22.93
25.54
31.49

24.73
27.51
33.10

26.56
29.40
35.23

3

14.13
16.03
20.06

16.71
18.89
23.37

18.64
21.00
26.03

20.60
23.07
28.48

22.64
25.12
31.57

24.40
26.98
32.68

26.55
29.49
34.38

28.27
31.09
37.19

dim p

4

15.90
18.07
22.78

18.67
20.94
25.75

20.54
23.10
27.85

22.60
25.02
29.76

24.18
26.84
32.86

26.11
28.71
34.05

28.02
30.86
36.50

29.92
33.09
39.23

Note : First figure is 10%, followed by 5% and 1%.

5

18.26
20.42
25.16

20.18
22.59
27.27

22.16
24.74
30.04

24.11
26.75
31.94

25.84
28.33
33.64

27.66
30.45
36.58

29.51
32.34
38.29

30.95
33.59
39.49

6

19.97
22.08
27.20

21.95
24.53
29.38

23.69
26.21
31.30

25.88
28.67
34.51

27.63
30.35
36.30

29.50
32.24
38.80

31.16
34.00
40.11

32.39
35.25
41.83

7

21.59
24.00
28.53

23.67
26.13
31.28

25.58
28.17
33.51

27.19
29.73
35.33

29.10
31.79
36.70

30.78
33.43
38.84

32.41
35.29
41.11

34.26
37.49
43.31

8

23.72
26.15
31.65

25.25
28.33
32.76

27.10
29.86
35.21

28.67
31.41
37.47

30.48
33.36
39.09

32.22
35.03
41.53

34.02
37.28
43.26

35.61
38.66
44.87
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Table A.3 : Critical Valaes Exp Test (¢ = ») for w € (.20, .80)

dimqg-p
2.60

4.67
3.54
5.95
4.50
7.19
5.32
8.09
6.16
9.39
6.90
991
1.75
11.02
8.43

9.48
11.78

oo

2

3.56
4.25
5.93

4.49
5.28
7.11

5.32
6.15
7.93

6.13
7.04
9.07

6.87
7.94
9.99

7.80
8.79
11.00

8.54
9.59
11.82

9.23
10.33
12.76

3

4.50
5.33
7.09

5.39
6.25
8.10

6.14
7.06
9.10

7.00
7.90
10.17

7.79
8.80
11.37

8.45
9.54
11.67

9.37
10.53
12.67

10.04
11.19
13.62

dim p

4

5.37
6.23
8.18

6.27
7.15
9.08

6.99
10.11

7.88
8.83
10.93

8.54
9.48
11.90

9.28
10.38
12.56

10.12
11.20
13.43

10.79
12.00
14.37

Note : First figure is 10%, followed by 5% and 1%.

5

6.16
7.09
9.13

7.02
7.96
9.91

7.84
8.88
11.13

8.62
9.66
11.94

9.24
10.36
12.69

10.10
11.16
13.60

10.83
11.91
14.74

11.45
12.53
14.86

6

6.98
7.88
10.07

7.85
8.75
10.87

8.57
9.58
11.76

9.43
10.59
12.94

10.58
11.31
13.60

10.88
12.11
14.56

11.59
12.76
15.49

12.20
13.41
15.92

7

7.86
8.83
10.84

8.63
9.61
11.70

9.44
10.49
12.55

10.09
11.08
13.38

10.84
11.97
14.19

11.58
12.67
14.96

12.25
13.43
15.97

13.12
14.33
16.83

8

8.68
9.71
12.38

9.42
10.62
12.87

10.16
11.22
13.66

10.80
11.94
14.56

11.58
12.69
14.92

12.26
13.50
16.01

13.01
14.277
16.85

13.69
14.91
17.62
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Table A.4 : Critical Values Exp Test (¢ = ») for 7 € (.15, .85)

dimq -p
2.79

5.16
3.65
6.01
4.93
8.07
5.94
9.35
6.85
10.45
7.70
11.43
8.64
12.55
9.41

8 10.68
13.29

2

3.45
4.17
5.80

4.76
5.69
7.71

5.70
6.72
8.65

6.64
1.76
10.22

7.50
8.69
11.32

8.51

9.73

12.34

9.37
10.54
13.36

10.18
11.49
14.27

3

4.35
5.18
6.99

5.56
6.53
8.64

6.47
7.45
9.80

7.38
8.50
11.06

8.31
9.43
12.41

9.16
10.33
13.05

10.17
11.51
13.87

11.00
12.28
15.07

dim p

4

5.15
6.02
8.13

6.44
1.35
9.48

7.34
8.41
10.66

8.24
9.41
11.63

9.07
10.22
13.06

9.88
11.14
13.67

10.84
12.12
14.75

11.68
13.16
16.03

Note : First figure is 10%, followed by 5% and 1%.

5

6.17
7.14
9.37

7.08
8.16
10.32

8.05
9.17
11.61

8.90
10.16
12.60

9.73
10.96
13.47

10.66
11.95
14.79

11.51
12.81
15.52

12.25
13.46
16.06

6

6.92
7.89
10.16

7.86
8.93
11.17

8.73
9.78
12.24

9.74
11.05
13.65

10.58
11.75
14.62

11.46
12.76
15.55

12.25
13.60
16.36

12.90
14.21
17.27

7

7.69
8.74
10.70

8.59
9.76
12.11

9.56
10.75
13.14

10.37
11.48
14.15

11.23
12.53
14.75

12.06
13.23
15.74

12.83
14.15
16.99

13.72
15.19
18.08

8

8.61
9.69
12.38

9.43
10.66
12.96

10.23
11.49
13.92

11.04
12.31
15.19

11.92
13.20
15.84

12.75
14.03
17.01

13.60
15.11
18.17

14.34
15.86
18.94
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Table A.5 : Critical Values Average Test (¢ = 0) for e (.20, .80)

dim p

1 2 3 4 5 6 7 8
dimq - p
3.68 4.98 6.31 7.44 8.69 9.92 11.05 12.32
1 4.58 5.88 7.24 8.48 9.87 11.11 12.26 13.58
6.55 7.89 9.40 10.95 12.11 13.60 15.02 16.51

5.10 6.51 7.74 8.89 10.02 11.23 1239 1372
2 6.09 7.65 8.84 1009 11.19 1249 1364 1510
837 1003 11.32 12.82 13.87 15.02 1635 17.97

6.70 7.88 9.00 1025 11.40 1247 1375 1487
3 7.89 9.06 10.16 11.54 12,75 1385 1515  16.28
1047 1154 1295 1432 1566 1686 17.80  19.25

8.02 9.14 1037 11.60 1271 13.88 15.00 16.10
4 937 1047 1170 13.00 1422 1544 1646  17.60
1212 1350 1476 1563 1695 1884  19.65  20.86

940 1046 11.71 12.80  13.78 1512 1624  17.38
5 10.81 11.89  13.28 1423 1536 17.01 17.78 18.86
13.94 1474 1623 17.66 18.61 2026  20.87 22,14

10.67 11.87 12.91 1409 1530 1640  17.37 18.56
6 12.08 13.35 14.37 15.62 16.82 18.14 1894  20.17
15.03 16.64 17.54 1898 20.22 2135 2216  23.80

12.01 13.08 1433 1545 16.53 17.64 18.62  19.88
7 13.50 1458 1589 17.02  18.11 19.25  20.18  21.58
16,76 1791 19.19 20.08 21.68 2271 2412 2512

13.18 1433 1537 1659 17.61 1874  20.02  20.87

8 1473 1587 17.23 1835 1929 2019  21.72 2275
1832 1939  20.56 21.71 2242 2377 2519 2633

Note : First figure is 10%, followed by 5% and 1%.
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Table A.6 : Critical Values Average Test (¢ = 0) for w e (.15, .85)

dim p

1 2 3 4 5 6 7 8
dimq - p
4.26 5.28 6.65 7.84 9.44  10.69 11.80  13.16
1 5.38 6.32 7.72 9.07 10.81 12.14  13.27 14.69
1.76 8.61 1030 12.21 13.73  15.28 16.64  18.40

5.68 7.46 8.67 9.87 1099 1223  13.31 14.80
2 6.73 8.87 10.08 1132 1247 1379 1505 1654
935 1190 13.28 1446 1585 1698 1848  20.25

7.84 9.09 1023 11.54 12,69 1378  15.08  16.08
3 927 1055 11.68 13.12 1430 1539 1677 17.99
1258 13.73 1535 1678 1823 19.09 2030  21.69

945 10.56 1175 13.02 1421 1544  16.50  17.60
4 11.09 1233 13.51 1479 16.09 1745 1836  19.49
14.71 1622 1724 1839 1972 21.61 2244  23.60

11.06 12.16 1339 1456 1545 17.06 18.02  19.20
5 12.91 1396 15.16 1624 1743 19.20 19.90  21.15
1676  18.06 1933 2048 21.48  23.13 2384  25.22

12.54  13.75 1478 16.06 1720  18.43 19.38  20.58
6 14.25 1576  16.64 17.86 19.24 2056  21.37  22.69
18.18 19.53  20.85 22.18 23.56 2472 2532 27.17

14.15 1526 1647 17.59 18.68 1976 2078  22.16
7 16.09 1724 1856 19.61  20.74 2193 2287 2435
2025 21.53 2271 2374 2525 2624 27.63  28.77

1555 1668 17.80  19.07 19.97 21.08 2245  23.23

8 17.52  18.68  20.09 21.21 22,18 2323 2471 2573
22.01 2314 2432 2553 2587 2796 2923  30.09

Note : First figure is 10%, followed by 5% and 1%.
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