Sustainability with endogenous discounting

JOHN M. HARTWICK
NGO VAN LONG
Sustainability with endogenous discounting

John M. Hartwick, Ngo Van Long

Série Scientifique
Scientific Series

Montréal
Octobre/October 2017

© 2017 John M. Hartwick, Ngo Van Long. Tous droits réservés. All rights reserved. Reproduction partielle permise avec citation du document source, incluant la notice ©. Short sections may be quoted without explicit permission, if full credit, including © notice, is given to the source.
CIRANO
Le CIRANO est un organisme sans but lucratif constitué en vertu de la Loi des compagnies du Québec. Le financement de son infrastructure et de ses activités de recherche provient des cotisations de ses organisations-membres, d’une subvention d’infrastructure du gouvernement du Québec, de même que des subventions et mandats obtenus par ses équipes de recherche.

CIRANO is a private non-profit organization incorporated under the Quebec Companies Act. Its infrastructure and research activities are funded through fees paid by member organizations, an infrastructure grant from the government of Quebec, and grants and research mandates obtained by its research teams.

Les partenaires du CIRANO

Partenaires corporatifs
Autorité des marchés financiers
Banque de développement du Canada
Banque du Canada
Banque Laurentienne du Canada
Banque Nationale du Canada
Bell Canada
BMO Groupe financier
Caisse de dépôt et placement du Québec
Fédération des caisses Desjardins du Québec
Gaz Métro
Hydro-Québec
Innovation, Sciences et Développement économique
Intact
Investissements PSP
Ministère de l’Économie, de la Science et de l’Innovation
Ministère des Finances du Québec
Power Corporation du Canada
Rio Tinto
Ville de Montréal

Partenaires universitaires
École de technologie supérieure (ÉTS)
HEC Montréal
Institut national de la recherche scientifique (INRS)
McGill University
Polytechnique Montréal
Université Concordia
Université de Montréal
Université de Sherbrooke
Université du Québec
Université du Québec à Montréal
Université Laval

Le CIRANO collabore avec de nombreux centres et chaires de recherche universitaires dont on peut consulter la liste sur son site web.

ISSN 2292-0838 (en ligne)
Sustainability with endogenous discounting

John M. Hartwick*, Ngo Van Long†

Résumé/Abstract

We construct a dynamic competitive model with a stock of man-made capital and several stocks of natural resources and ask under what conditions consumption will be constant if infinitesimal households with heterogeneous preferences and endowments discount their utility flows at an endogenous rate that depends some macroeconomic variables. We show that for consumption to be constant, this function must be the marginal product of capital function. We demonstrate that Hartwick’s Rule (that along the constant consumption path, resource rents must be invested in man-made capital) holds in a modified form that takes account of natural growth of resource stocks.

Mots clés/Key words: Sustainability, Sustainable development, Constant consumption, Hartwick’s Rule, Endogenous discounting.

Codes JEL/JEL codes: Q01, Q32

* Email: harwick@econ.queensu.ca
† Email: ngo.long@mcgill.ca
1 Introduction

The concern for sustainable development has led to several formulations of the concept of sustainability (e.g. Solow, 1974; Pezzey, 1992; Cairns and Martinet, 2014; Asheim, 2010; Mitra et al., 2013; Fleurbaey, 2015). The simplest sustainability concept is that of constant consumption. The standard textbook model of the infinitely lived consumer assumes that individuals discount the future at a constant rate, which generically rules out constant consumption over the entire time horizon. There is an alternative stream of literature that assumes endogenous discounting (Uzawa, 1968; Epstein, 1987; Obstfeld, 1990; Pittel, 2002, Ch. 5; Ayong le Kama and Schubert, 2007; Yanase, 2011). For example the discount rate that applies at time t may depend on the consumer’s wealth, or consumption level, or the quality of the environment at that time.

In this paper, we suppose that infinitesimal households use an instantaneous discount rate that depends on some macroeconomic variables. We show that for constant consumption to hold, that macroeconomic variables must be such that the endogenous discount rate equals the marginal product of the aggregate capital stock. We demonstrate that under these circumstances, Hartwick’s Rule (that along the constant consumption path, resource rents must be invested in man-made capital) holds in a modified form that takes account of natural growth of resource stocks.

2 The basic model

There is a continuum of infinitely lived individuals (or households), indexed by θ, where θ ranges from zero to 1. Their utility functions may differ from each other, and are denoted by $u_\theta(c(t, \theta))$ where t denotes time. We assume that $u_\theta(\cdot)$ is strictly increasing and strictly concave, with $u'_\theta(0) = \infty$. Each individual θ is endowed with an initial capital stock $k(0, \theta)$ and two (privately owned) resource stocks, $x_1(0, \theta)$ and $x_2(0, \theta)$.

1Obviously the model can be extended to the case of many stocks of natural resources, and many man-made capital goods.
represent an oil deposit, and \(x_2 \) is a forest. Think of \(x_1 \) as an exhaustible resource and \(x_2 \) as a renewable resource. Let \(q_1(t, \theta) \) be the individual’s extraction from stock \(x_1(t, \theta) \), say oil, and \(q_2(t, \theta) \) from stock \(x_2(t, \theta) \), say timber and firewood. The dynamics of these stocks are

\[
\dot{x}_1(t, \theta) = -q_1(t, \theta)
\]

\[
\dot{x}_2(t, \theta) = -q_2(t, \theta) + G(x_2(t, \theta))
\]

where \(G(.) \) is the natural growth function. The individual sells the extracted resources at the market prices \(p_1(t) \) and \(p_2(t) \). Firms buy these extracted resources and use them as inputs in the production of the final good, which can be consumed or invested. Firms do not own capital: they rent capital from individuals, at the market rental rate \(r(t) \). The economy’s aggregate capital stock is \(K(t) \), where

\[
K(t) = \int_0^1 k(t, \theta)d\theta
\]

Define the aggregate resource inputs by

\[
R_1(t) = \int_0^1 q_1(t, \theta)d\theta, \quad R_2(t) = \int_0^1 q_2(t, \theta)d\theta
\]

The aggregate production function is

\[
Y(t) = F(K(t), R_1(t), R_2(t))
\]

where \(Y(t) \) is the output of the final good.\(^2\) The production function has the usual properties: concavity, positive and diminishing marginal products, and the Inada conditions hold. We also assume that \(F(.) \) is homogeneous of degree 1, so that firms earn zero profit. Perfect competition prevails, so that

\[
F_K(K(t), R_1(t), R_2(t)) = r(t)
\]

\[
F_{R_1}(K(t), R_1(t), R_2(t)) = p_1(t), \quad F_{R_2}(K(t), R_1(t), R_2(t)) = p_2(t).
\]

\(^2\)By having several resource stocks, this production function is slightly more general than the one studied by Solow (1974) and Dasgupta and Heal (1979).
The individual’s income at time \(t \) is

\[
y(t, \theta) = r(t)k(t, \theta) + p_1(t)q_1(t, \theta) + p_2(t)q_2(t, \theta)
\]

Individuals’ capital accumulation equation is given by

\[
\dot{k}(t, \theta) = y(t, \theta) - c(t, \theta)
\]

The aggregate resource stocks are

\[
X_1(t) \equiv \int_0^1 x_1(t, \theta)d\theta, \quad X_2(t) \equiv \int_0^1 x_2(t, \theta)d\theta
\]

2.1 Individual optimization

Each infinitely-lived individual seeks to maximize her discounted stream of utility flow by choosing the consumption path \(c(t, \theta) \) and the extraction paths \(q_1(t, \theta) \) and \(q_2(t, \theta) \):

\[
\max \int_0^\infty u_\theta(c(t, \theta))\beta(t)dt
\]

where \(\beta(t) \equiv e^{-\int_0^t \phi(K(\tau), R_1(\tau), R_2(\tau))d\tau} \) is the discount factor, and \(\phi \) is a function of the macroeconomic variables \(K, R_1 \) and \(R_2 \). Since each individual is infinitesimal, her decisions have no impact on the macroeconomic variables. The maximization is subject to the transition equations

\[
\dot{k}(t, \theta) = r(t)k(t, \theta) + p_1(t)q_1(t, \theta) + p_2(t)q_2(t, \theta) - c(t, \theta)
\]

\[
\dot{x}_1(t, \theta) = -q_1(t, \theta)
\]

\[
\dot{x}_2(t, \theta) = -q_2(t, \theta) + G(x_2(t, \theta))
\]

and the non-negativity constraints \(c(t, \theta) \geq 0, q_1(t, \theta) \geq 0, q_2(t, \theta) \geq 0 \), as well as

\[
\lim_{t \to \infty} x_1(t, \theta) \geq 0, \lim_{t \to \infty} x_2(t, \theta) \geq 0 \text{ and } \lim_{t \to \infty} k(t, \theta) \geq 0.
\]

In what follows, for notational simplicity, we will suppress the dependence on \(t \) and \(\theta \) whenever there is no risk of confusion.
Let π, ψ_1 and ψ_2 be the co-state variables associated with the state variables k, x_1 and x_2. The Hamiltonian function is

$$H = u_\theta(c)\beta + \pi [rk + p_1q_1 + p_2q_2 - c] - \psi_1q_1 + \psi_2[G(x_2) - q_2]$$

Restricting attention to interior solution for simplicity, we obtain the following optimality conditions

$$u_\theta'(c)\beta - \pi = 0 \quad (3)$$
$$\pi p_1 - \psi_1 = 0 \quad (4)$$
$$\pi p_2 - \psi_2 = 0 \quad (5)$$
$$\dot{\pi} = -\frac{\partial H}{\partial k} = -r\pi \quad (6)$$
$$\dot{\psi}_1 = -\frac{\partial H}{\partial x_1} = 0 \quad (7)$$
$$\dot{\psi}_2 = -\frac{\partial H}{\partial x_2} = -\psi_2G' \quad (8)$$

The transversality conditions are

$$\lim_{t \to \infty} \pi(t)k(t) = 0, \quad \lim_{t \to \infty} \psi_1(t)x_1(t) = 0, \text{ and } \lim_{t \to \infty} \psi_2(t)x_2(t) = 0 \quad (9)$$

2.2 The competitive equilibrium

In this subsection, we make use of the individual optimality conditions and the firms’ equilibrium conditions to derive some properties of the competitive equilibrium path of the economy.

Taking the logarithm of equations (3), (4) and (5) we obtain

$$\ln u_\theta' - \int_0^t \phi(K(\tau), R_1(\tau), R_2(\tau))d\tau = \ln \pi \quad (10)$$
$$\ln \pi + \ln p_1 = \ln \psi_1 \quad (11)$$
$$\ln \pi + \ln p_2 = \ln \psi_2 \quad (12)$$
Differentiating equations (10) to (12) with respect to time, and recalling (1) and (2) we get

\[
\frac{u''_0(c(t))\dot{c}(t, \theta)}{u'_0(c(t))} - \phi(K(t), R_1(t), R_2(t)) = r(t) = F_K
\]
(13)

\[
\frac{\dot{\pi}}{\pi} + \frac{\dot{p}_1}{p_1} = \frac{\dot{\psi}_1}{\psi_1} \implies -r(t) + \frac{1}{F_{R_1}} \frac{d}{dt} F_{R_1} = 0
\]
(14)

\[
\frac{\dot{\pi}}{\pi} + \frac{\dot{p}_2}{p_2} = \frac{\dot{\psi}_2}{\psi_2} \implies -r(t) + \frac{1}{F_{R_2}} \frac{d}{dt} F_{R_2} = -G'(x_2)
\]
(15)

Equation (13) states that consumption will be constant if and only if the instantaneous discount rate \(\phi(K(t), R_1(t), R_2(t)) \) is identically equal to the function \(F_K \). Equation (14) states that the rate of increase in the price of oil must equal the rate of interest (Hotelling’s Rule). Equation (15) says that the rate of increase in the price of timber is equal to the excess of the rate of interest over the natural rate of forest reproduction.

Proposition 1: The competitive equilibrium of the economy is characterised by a constant consumption path for all individuals if and only if individuals’ endogenous discount function is equal to the marginal product function \(F_K \).

3 Net savings rule for constant consumption

The competitive equilibrium with constant consumption that we described in the preceding section implies that sufficient savings are undertaken to ensure sustainability. What can we say about the aggregate savings of the economy? To answer this question, it is convenient to think of the existence of a social planner that maximizes a constant stream of aggregate consumption. The optimal control problem of the social planner consists of choosing a constant \(\bar{C} \) such that solves

\[
\max \bar{C}
\]

subject to

\[
\dot{K}(t) = F(K, R_1, R_2) - \bar{C}, \ K(0) = K_0 > 0
\]
(16)

\[
\dot{X}_1 = -R_1, \ X_1(0) = X_{10} > 0
\]
(17)
\[\dot{X}_2 = G(R_2) - R_2, \quad X_2(0) = X_{20} > 0 \] (18)

and

\[\lim_{t \to \infty} K(t) \geq 0, \quad \lim_{t \to \infty} X_1(t) \geq 0, \quad \lim_{t \to \infty} X_2(t) \geq 0. \] (19)

As shown in Cairns and Long (2006), for this type of problem where the maximand is not an integral, the Hamiltonian function is simply the the sum of stock dynamics weighted by the corresponding co-states, and it takes the value of zero along the optimal path, i.e.,

\[\pi^S(t) \left[F(K(t), R_1(t), R_2(t)) - \overline{C} \right] - \psi^S_1(t) R_1(t) + \psi^S_2(t) \left[G(R_2(t)) - R_2(t) \right] = 0 \] (20)

where \(\pi^S, \psi^S_1 \) and \(\psi^S_2 \) are the co-state variables in the social planner’s optimization problem. Dividing (20) by the shadow price of capital, it follows that the optimal investment in man-made capital must satisfy the condition

\[I(t) \equiv F(K(t), R_1(t), R_2(t)) - \overline{C} = \left\{ \frac{\psi^S_1(t)}{\pi^S(t)} R_1(t) + \frac{\psi^S_2(t)}{\pi^S(t)} R_2(t) \right\} - \frac{\psi^S_2(t)}{\pi^S(t)} G(R_2(t)) \] (21)

That is, investment in man-made capital must equal the value of the extracted resources (the terms inside the curly brackets) net of the natural growth of the renewable resource, \(\frac{\psi^S_2(t)}{\pi^S(t)} G(R_2(t)) \). This is a version of Hartwick’s Rule (Hartwick, 1977, Dixit et al., 1980). It is also clear that the ratios of the social planner’s costate variables in this section correspond to the market prices in the decentralised version that we studied in the preceding section:

\[\frac{\psi^S_1(t)}{\pi^S(t)} = \frac{\psi_1(t, \theta)}{\pi(t, \theta)} = p_1 = F_{R_1}, \quad \frac{\psi^S_2(t)}{\pi^S(t)} = \frac{\psi_2(t, \theta)}{\pi(t, \theta)} = p_2 = F_{R_2} \] (22)

Proposition 2: If individuals use an endogenous discount rate that is equal to the marginal product of capital, then society’s consumption path is the highest possible constant consumption path. Along such path, at each point of time, the investment in man-made capital is equal to the value of all extracted resources, net of the value of their natural growth.
4 Concluding Remarks

We have shown that sustainability (in the sense of constant consumption) can be achieved in the market economy if individuals use an endogenous discount function that is equal to the marginal product of capital. The model abstracts from externalities (such as climate change induced by the emissions of GHGs from the burning of fossil fuels and firewood). When there are externalities, the constant consumption path achieved by the unregulated market is socially inefficient. Obviously, social intervention such as the use of a carbon tax would be required to restore efficiency (see e.g. d’Autume et al., 2010)

References

