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Résumé/abstract  
 

We experimentally study behavior in a common property renewable resource extraction game with 

multiple equilibria. In the experiment, pairs of subjects competitively extract and consume a renewable 

resource in continuous time. We find that play evolves over time into multiple steady states, with 

heterogeneous extraction strategies that contain components predicted by equilibrium strategies. We 

find that simple rule-of-thumb strategies result in steady-state resource levels that are similar to the 

best equilibrium outcome. Sensitivity of aggressive strategies to the starting resource level suggests 

that improvement in renewable resource extraction can be attained by ensuring a healthy initial 

resource level. Our experiment thus provides empirical evidence for equilibrium selection in this 

widely used differential game, as well as evidence for the effectiveness of a resource management 

strategy. 
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1 Introduction

Differential games are widely used to analyse strategic interaction in complex dynamic en-

vironments. The combination of game theory and control theory is well-suited for the study

of accumulation models in economics (Dockner and Sorger, 1996).1 Specifically, the linear

quadratic differential game is a workhorse model in this literature (Dockner et al (2000)).

Much of its utility derives from the fact that it has an analytically tractable solution with

a unique linear Markov-perfect equilibrium. However, in many cases there also exist non-

unique non-linear Markovian equilibria, making equilibrium selection an issue.

Multiplicity of equilibia arises in linear quadratic differential games in many important

applications. For example, Tsutsui and Mino (1990) show that in an infinite horizon duopoly

game with sticky prices, near collusive pricing can be sustained by some non-linear Markovian

equilibria. In an international polution control game, Dockner and Long (1993) show that

a Pareto efficient steady state can be approximated by a set of non-linear Markov-perfect

equilibrium strategies. Similar results have been shown in a symmetric public goods game

(Wirl, 1996 and 1994). Wirl and Dockner (1995), in a global warming game show that

non-linear Markovian strategies lead to Pareto inferior equilibria compared to the linear

Markov-perfect equilibrium.

In this paper, we modify an oligopoly game to address equilibrium selection in a common

pool resource environment (e.g., Benchekroun, 2003).2 Oligopoly games in which the firms

have common access to a productive asset, have been recently examined by Benchekroun

(2003, 2008), Fujiwara (2008), Lambertini and Mantovani (2013), Colombo and Labrecciosa

(2013a, 2013b), and Mason and Polasky (1997).3 In these models, the firms exploit a common

1 Long (2013) offers a broad survey of dynamic games in economics, Jorgensen and Zaccour (2004) examine
the use of differential games in management science and marketing in particular, Lambertini (2013) covers
oligopolies in natural resource and environmental economics and Jorgensen, Martin-Herran and Zaccour
(2010) review dynamic pollution games.

2 Karp (1992) considers the case of a common property non-renewable resource.
3 For more details on dynamic games in economics see Long (2013). For dynamic games in environmental

and resource economics in particular, see Jorgensen, Martin-Herran and Zaccour (2010) and Lambertini



property renewable resource and compete in an output market (Benchekroun, 2008). The

issue of mulitiple equilibria is well illustrated by the work of Fujiwara (2008), who shows

that the linear Markov-perfect equilibrium results in a higher price in the output market

compared to the non-linear Markov-perfect equilibria. Despite the differences in outcomes

(and efficiency) between linear and non-linear solutions, the linear solution is often taken as

standard in the literature.

Our experiment empirically addresses the issue of equilibrium selection in a continuous

time common pool resource game. The environment is straightforward: a renewable re-

source, which replenishes itself at a constant proportional rate, is harvested by two firms

simultaneously in continuous time. Our model, which is one of the simplest in its class, is

structurally closest to the productive asset oligopoly model studied by Benchekroun (2003

and 2008); it retains the competitive nature of the oligopoly, but rather than compete in

an output market, the agents immediately consume the resource they harvest.4 Within this

linear quadratic framework we derive a piecewise linear Markovian equilibrium and a con-

tinuum of equilibria with non-linear strategies. We implement our model in continuous time

in the experimental laboratory to provide an empirical basis for human behavior in this

environment.5

Equilibrium selection in our game is an important question for at least two reasons.

First, equilibria with non-linear strategies can substantially differ from equilibria with linear

strategies in terms of both efficiency and the extent of the tragedy of the commons that

typically results in this type of differential game. Second, when designing and assessing the

(2013).
4 See also the fish war difference game of Levhari and Mirmann (1980), the transboundary pollution

games in Dockner and Long (1993) and Rubio and Casino (2002), and the general productive asset games
of Benhabib and Radner (1992), Dutta and Sundaram (1993), Dockner and Sorger (1996).

5 In economics experiments, there have been studies that show that Markovian strategies characterize
behaviour in dynamic games with states of the game evolving over time (Battaglini, Nunnari and Palfrey
2012a, Battaglini, Nunnari and Palfrey 2012b and Vespa 2012). In these studies the Markov-perfect equilib-
rium is inefficient and the cooperative equilibrium can be achieved by some history dependent punishment
strategies. In our model we have continuum of Markovian equilibria that can sustain different levels of steady
states including the most efficient one.
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impact of a policy in a given market a regulator needs to establish which equilibrium is likely

to result and which class of strategies players may be contemplating. Continuous time games

are important because agents in real life are not typically able to synchronize their decisions

as they do in a typical discrete time experiment in the laboratory.

Our experimental design involves two environmental manipulations. First, within an ex-

perimental session, we hold constant the initial resource level and set three different initial

resource extraction rates, beginning the game on three different equilibrium paths that re-

sult in three different steady state stock levels. This gives us a comparative static test of

equilibrium play. Second, across experimental treatments, we manipulate the initial resource

level, while holding the implied steady state levels constant. When the initial stock level

is increased, a set of relatively aggressive equilibria are eliminated, all of which are off the

initial equilibrium path. Thus although a set of strategies is eliminated, the equilibrium

prediction is unchanged.

We find evidence for strategies with both linear and non-linear components of the state

variable, as well as rule-of-thumb strategies, and that play evolves over time into multiple

steady states. Among the subject pairs that reach a non-zero resource level in the steady

state, we find a bimodal distribution of steady states, indicating two different levels of

aggressivity of resource extraction. Rule of thumb strategies involve setting a very low

or a zero extraction rate to quickly increase the stock level to the point where it supports

a high steady state extraction rate. These strategies result in steady states similar to the

linear equilibrium outcome.

When we eliminate a set of non-linear strategies, contrary to an absence of a theoretical

prediction, we find improved extraction behaviour within the more aggressive pairs coming

from an improvement in the non-linear strategies they employ. In other words, eliminating

the most aggressive non-linear strategies improves outcomes among the groups that appear

to employ non-linear type strategies. This provides fairly strong evidence for the use of
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strategies with a component non-linear in the stock variable. On the other hand, different

initial resource extraction rates, i.e., different initial equilibrium paths, have no measured

effect on behavior. This provides no evidence that equilibrium outcomes are sensitive to the

initial equilibrium path.

Our results have implications for the management of non-renewable resources. First,

while many of the subjects’ strategies contain a component of equilibrium strategies, good

steady-state resource levels (similar to the linear steady-state resource level) were achieved

with the simple technique of low initial extraction focusing on raising the stock level before

extracting significant amounts of the resource. Our conjecture is that in the presence of

competitive extraction, and the strategic uncertainty it creates, this rule of thumb behavior

represents a safe method for managing the resource. Second, the sensitivity to the starting

resource level of the strategies with non-linear components in the state variable suggests that

improvement in renewable resource extraction can be attained by ensuring a healthy initial

resource level.

The next section details the model, which is followed by the experimental design and

procedures. We then detail the experimental results, discuss our experiment in the context

of relevant empirical literature and conclude.

2 Model

A renewable resource with a stock level S(t) at time t grows naturally at the rate of δS(t),

where δ is the implicit growth, or replenishment, rate of the resource.6 Two identical agents

share access to the resource. The agents costlessly, simultaneously and privately extract the

6 For simplicity we consider only the range of stock where the natural rate of growth of the resource is
an increasing function of the stock, omitting the range that exceeds the “environmental carrying capacity”
(where the natural rate of growth of the resource becomes a decreasing function of the stock) as in, e.g.,
in Fujiwara (2008). We do this to economize on notation and to focus on the region of interest where the
equilibrium strategies are stock dependent.
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Figure 1: Instant payoff function

 

available resource to maximize the present value of their discounted payoff over an infinite

horizon. Let the extraction rate of each player i ∈ (1, 2) at time t be denoted qi(t). The

evolution of the stock is given by

˙S(t) = δS(t)−
∑

qi(t) with S(0) = S0,

and agent i′s payoff at time t is

ui(qi(t)) = qi(t)−
qi(t)

2

2
.

Note that the instantaneous payoff (depicted in Figure 1) reaches its maximum when

q = 1.7 Assuming that the state variable can be observed and used for conditioning behavior,

7 If we assume two countries exploiting a common fishery ground for consumption in the domestic markets
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we focus on the set of stationary Markovian strategies,

qi(t) = φi(S(t)).

Thus at any point in time the extraction decision of an agent depends only on the state of

the stock at that moment. These strategies are simple in structure, do not require precom-

mitment to a course of action over time and have been assumed to be a good description of

realistic behaviour (Dockner and Sorger, 1996).

Each agent i takes the other agent’s strategy as given and chooses a Markovian strategy

that maximizes

Ji =

∞∫
0

ui(qi(t))e
−rtdt

s.t.

˙S(t) = δS(t)− qi(t)− φj(S(t))

S(0) = S0

qi(t) ≥ 0,

where r > 0 is the common discount rate. We assume that δ > 2r, i.e., that the marginal

productivity of the stock is high relative to the discount rate of the players. This assumption

ensures existence of positive stable steady state stock levels (Dockner and Sorger, 1996,

Benchekroun, 2008).

In general the feedback equilibrium of a differential game is derived from the solution of

the Hamilton-Jacobi-Bellman equation (Dockner at al., 2000). Let (φ∗1, φ
∗
2) be a subgame

perfect Markov Nash equilibrium. Let Vi(S) be player i′s value function such that Vi(S) =
∞∫
0

ui(φ
∗
iS
∗(t))e−rtdt with S(0) = S (Tsutsui and Mino,1990). For our problem the Hamilton-

with a linear inverse demand function Pi = 1 − qi
2 ; i = 1, 2 and zero marginal cost, then the instantaneous

payoff function gives the instantaneous profit for each country.
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Jacobi equation for agent i is

rVi(S) = max [qi(t)−
qi(t)

2

2
+ V ′i (δS(t)− q1(t)− φ∗j(S(t)))].

Proposition 1: A symmetric Markov Perfect Nash equilibrium of this game is given by

(φ∗, φ∗) such that

φ(S) =


0, for S < δ−2r

δ(2δ−r)

2r
3δ
− 1

3
+ (2δ−r)S

3
, for δ−2r

δ(2δ−r) ≤ S ≤ 2
δ

1, for S > 2
δ

Proof: See Appendix B.

The equilibrium extraction strategy described in Proposition 1 is linear in current stock

for the range of stock levels between δ−2r
δ(2δ−r) and 2

δ
. Note that if the stock level is higher than

2
δ
, best consumption of the resource for both agents is ensured: each agent extracts at the

rate of 1, which is the rate that gives the highest instantaneous payoff.

Proposition 2 : The game admits a continuum of symmetric Markov Perfect equilibria.

The inverse of an equilibrium strategy is given by

S(q) =
2

δ
− 3(1− q)

2δ − r
+ C(1− q)

−δ
−r+δ ,

where C is an arbitrary constant of integration that belongs to an interval defined by the

condition of stability of steady states.

Proof: See Appendix B.

When C = 0 we obtain the the linear increasing portion of global Markov Perfect Nash

equilibrium strategy, described in Proposition 1. Each value of C < 0 above a lower bound

7



gives a locally defined non-linear Markov-perfect equilibrium strategy.8

Let the steady state extraction of the resource by each player in a symmetric equilibrium

be denoted by qss and the steady state stock be denoted by Sss.

Corollary 1 : For the equilibrium defined in Proposition 1 we have ,

qss = 1

Sss =
2

δ
.

For C < 0 above a lower bound given by the condition of stability of steady states we have

qss = 1− (
2r − δ

Cδ(2δ − r)
)
r−δ
2δ−r

Sss =
2

δ
(1− (

2r − δ
Cδ(2δ − r)

)
r−δ
2δ−r ).

Proof: See Appendix B.

The steady state extraction rate and stock of the resource is an increasing function of C,

as C → 0, qss → 1, which gives the largest instantaneous payoff at the steady state. Thus

with C < 0, the larger the absolute value of C, the more aggressive is the corresponding

strategy, causing the agents to be worse off in the long run.

Figure 2 presents several examples of equilibrium strategies in this game for parameter

values we chose in the experiment. In the figure, the horizontal axis is the stock level and the

vertical axis is the extraction rate. The strategy labelled ‘Linear’ is the non-cooperative linear

strategy (i.e., C = 0). To the right of this strategy, labelled ‘Cooperative’, is the cooperative

linear strategy, i.e., the strategy that maximizes the joint welfare of both players (but not an

equilibrium result of the non-cooperative game).9 The line called ‘Steady State’ represents

steady-state extraction at different stock levels, where q = δS
2

. The locally defined curved

lines represent different non-linear equilibrium strategies (i.e., C 6= 0), with lower steady

8 A global Markov-perfect Nash equilibrium strategy is defined over the entire state space (Benchekroun,
2008). A local Markov-perfect Nash equilibrium strategy is defined over an interval of the state space and
supports a stable steady state within that interval (Dockner and Wagener, 2013).

9See Appendix B.
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Figure 2: Representative Equilibrium Strategies
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state stock levels resulting as the curve representing the strategy moves left on the graph

towards the vertical axis.10

3 Experimental Design

Our experiment is a continuous time simulation of an infinite resource extraction game. In

the experiments, subjects view, in real time, the dynamics of the stock level while setting

their extraction rate. The experimenter sets the initial extraction rate and the starting stock

level, the simulation begins, and then the subjects are free to change their extraction rates

with an on-screen slider. Our parameter selection reflects the need for the simulation to be

manageable while providing an empiricial test of linear vs. non-linear strategies.

In order to provide a strong test of the predisposition of subjects to play different strate-

gies, we varied our experimental design along two dimensions. First, our design consists of

several games within each session with different starting extraction rates. Holding the initial

stock constant but varying the subjects’ initial starting extraction rate places them on a

different equilibrium path at the start of the experiment, allowing us to test whether the

initial condition has an effect on the strategy played in the game. Second, our design con-

sists of two separate treatments with different initial stock levels, while holding the strategy

implied by the initial extraction constant across treatments. Increasing the initial stock level

eliminates a set of equilibrium strategies that exist at the lower initial stock level, providing

no theoretical reason for a behavioral effect if linear strategies dominate behavior.

Table 1 summarizes the experimental design. The first two columns of the table present

the starting extraction rates for initial stock levels of 7 and 14. The third column shows the

predicted steady-state stock levels for the non-cooperative equilibria corresponding to the

starting extraction rates (note that the steady state stock level is identical for both initial

10See Appendix B for the time paths of stock level and extraction for different equilibrium strategies.
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Table 1: Experimental Parameters

Starting Extraction Starting Extraction Steady State Stock
Inital Stock = 7 Initial Stock = 14

Game 1-6 0.029 0.344 28.57
Game 7-8 0.054 0.384 20.00
Game 9-10 0.145 0.633 11.50

stock levels). The rows show which of the ten games contained which parameters. For games

one through six subjects were placed on an initial path for the non-cooperative linear strategy

(the line labelled ‘Linear’ in Figure 2), with an initial extraction rate of 0.029 and 0.344 in the

two treatments. In games seven and eight, the initial extraction rate implies the non-linear

strategy labelled ‘Non-linear’ in Figure 2. And in games nine and ten, the initial extraction

rate implies the non-linear strategy labelled ‘High Stock Aggressive’ in Figure 2. To see this

note that when the starting stock is 7 one of the most aggressive strategies available is the

‘Low Stock Aggressive’ strategy depicted in Figure 2. However, if the starting stock is 14,

one of the most aggressive strategies available is the ‘High Stock Aggressive’ strategy. The

higher starting stock of 14 eliminates the non-linear strategies between those two strategies.

The time to reach the steady state depends on the replenishment rate δ, the discount

rate r, and the initial stock level. We chose the replenishing rate δ = 0.07 and the discount

rate r = 0.005 so that, for any of our initial stock levels the theoretical time to reach any

steady states is a maximum of something less than four minutes. Figure 3 presents the

equilibrium dynamics for both the stock level and extraction rate for each of the different

experimental treatments. The graphs on the left show the dynamics of the stock level and

the graphs on the right show the same information for the extraction rate. The two graphs

at the top of the figure display this information for the lower starting stock level, and the

two graphs at the bottom represent the higher starting stock level. Within the figures, the

(top) curve represents the linear non-cooperative equilibrium, and the lower curves represent

increasingly competitive non-linear equilibria.
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Figure 3: Predicted Time Paths For Experimental Parameters

 

The right-hand portion of Figure 3 shows the dynamics of the extraction rates. Notice

that the starting extraction rate is inversely related to the steady-state stock level. This is

intuitive: low initial extraction rates allow the stock to build up at a faster rate. Notice also

that for the highest starting extraction rate, when the initial stock level is 14, the theoretical

extraction rate decreases over time, enhancing our ability to identify the play of non-linear

strategies in the data.

Looking at the dynamics of the stock levels, notice that in both treatments the final stock

level is identical for each of the three initial extraction rates. For example, the steady-state

stock level is approximately 28.57 in both graphs for the non-cooperative linear strategy
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equilibrium, and approximately 11.5 for the more aggressive equilibrium. The longest time

to the steady state stock level occurs with the linear strategy. This is reflected by the fact

that the highest steady-state stock level is reached in this case.

4 Experimental Procedures

We implemented this real-time continuous renewable resource game in a computer labora-

tory.11 Subjects were presented the screen shown in Figure 4. At the top of the screen,

subjects were shown the current stock level (12.94 in the figure), the elapsed time in the

game, and the amount of time idle, i.e., the time since the last subject changed her or his

extraction rate. If this number ever reached 30 seconds, we assumed a steady state had been

reached and stopped the simulation.

We implemented the discount rate by applying it to subjects’ payoffs every second. When

the simulation stopped, either after four minutes or after 30 seconds of player inactivity, the

computer computed the discounted sum of payoffs for the subject out to infinity. This

computation assumed that the extraction rate stayed the same forever as it was at the end

of the simulation, and took into account whether the stock level would ever go to zero.

On the right of the screen near the middle, the “continuation payoff” that subjects would

receive if the simulation were to stop was always displayed. We presented this information

to give subjects a better feel for the fact that their pay included both their actual resource

extraction and what they would extract if the game went forever.12

11 As described in Brehmer (1992) decision making in real time is decision making “in context and time”.
In this setting decisions are made in an “asynchronous fashion” with constant updates of information (Hu-
berman and Glance,1993). For economic experiments in continuous time see Oprea and Friedman (2012)
and Oprea, et al. (2011). Janssen, et al (2010) have also studied a common pool resource problem in real
time.

12 In economics experiments there are two basic approaches to address the issues of infinite horizon
and the presence of time preference. One is to impose an exogenous probability of termination of the
round at any time t. The other approach is to let the decision making task last for a fixed period of
time and add a justifiable continuation payoff, where the payoff during the round and after it should be
discounted appropriately. Noussair and Matheny (2000) and Brown, Christopher and Schotter (2011)) show
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Figure 4: Experiment Screen Shot
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The black rectangle in the middle of the screen showed the dynamics of the stock level

in a continuously sliding window. Just below, a slider could be moved left or right with the

computer mouse to set the current extraction rate. Below the slider was a blue dot that

informed the subjects of the total extraction rate that would hold the stock level constant.

Also below the slider was a black dot that showed the total extraction rate, i.e., the sum of

the two players’ extraction rates.

Numbers across the bottom of the screen included the subject’s own extraction rate, the

other player’s extraction rate, the total extraction rate, and the rate at which the stock level

would be held constant. The instant payoff and the cumulative (discounted) payoff for the

game were the final two items of information on the screen.

Subjects were informed everything about the model, including the stock replenishing

rate, discount rate, and the quadratic payoff function (which was a minimum at extraction

rates 0 and 2 and a maximum at extraction rate 1). They were told that the structure of

the game would always stay the same for every game, but the intial extraction rate, which

would be identical for both subjects, might change for different games (see Appendix A for

the instructions for the treatment with starting stock level equal to fourteen).

Before playing the two-player games, subjects were required to pass a test that would

provide common knowledge among the participants that all subjects knew how to control

the stock level with their extraction rate. Specifically, all subjects were given fifteen tries, as

monopolists, to manipulate the stock level from five to twelve, hold it constant for a moment,

and then reduce it to seven, using their extraction rate as a tool, within one minute. Payoffs

were not discussed until after subjects passed the test. Subjects who did not succeed were

dismissed and paid their show up fee.

In 19 experimental sessions there were 67 pairs consisting of 134 subjects earning an

average of $26, including a standard $10.00 show-up fee at the CIRANO experimental lab-

that behaviour is not significantly different under different approaches of discounting in their laboratory
experiments.
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oratory in Montreal. In total, thirty-three pairs of subjects played the first treatment and

thirty-four pairs of subjects played the second treatment. Sessions lasted no more than two

hours. Twenty-five subjects were dismissed for failing the pre-test.

5 Experimental Results

5.1 Extraction Types

There was a high degree of heterogeneity among the different groups (each group consists of

a pair of subjects), but play can basically be characterized as resulting in an end of game

stock that (1) maximizes long-term extraction rates, that (2) falls short of maximizing but is

greater than zero, and that (3) is equal to zero. Figure 5 shows an example of the extraction

decisions for four different subject pairs. In each of the sub-figures, the horizontal axis

depicts the stock level and the vertical axis represents the extraction rate. The two dashed

lines represent the extraction decisions of the two players; the green line, which indicates

a zero extraction rate up to a stock level of approximately 15 shows the linear cooperative

strategy, and the brown line (located above the green line) shows the linear non-cooperative

strategy.

Panel a in Figure 5 presents the extraction decisions of a pair that are qualitatively

similar to the linear non-cooperative strategy. In Panels b and c the extraction strategies

appear fairly linear but the extraction rates are higher than in Panel a. And in Panel d we

present the decisions of a pair that are nothing remotely like an equilibrium strategy: this

subject pair quickly ran their stock level to zero.

In general, we classify three different types of groups according to the stock level they

reach by the end of their play. Type 1 groups reach a stock level equal to or better than the

most desirable stock level where the extraction rate for each player can attain the maximum

instantaneous payoff of 1. Type 3 groups reach a stock level of zero. Type 2 groups reach a

16



stock level between Type 1 and Type 3.

If these types are not apparent in Figure 5, they become more so in Figure 6, which is a

plot of the same subject pairs’ total extraction rate over time. In the figure, the horizontal

axis represents simulation time in seconds and the vertical axis is the sum of the two players’

extraction rates at each instant. Panels a, b, c, and d display results for the same subject

pairs as the identical panels in Figure 5.

Panel a reveals that this pair reached a steady state level where the sum of the players’

extraction rates in the steady state reached a maximum of 2. If we only consider the final

game in all the sessions, 13 out of 33 groups in Treatment 1, and 12 out of 34 groups in

Treatment 2 were Type 1 groups. Panel d shows that this particular pair reduces the stock

level to zero 0. Six groups in the first treatment and 3 groups in the second treatment were

Type 3 in the final game. Panels b and c show examples of extraction rates at the end of

the game less than 2 but greater than 0. The remaining groups were Type 2.

The behavior of the third type is analogous to the predicted behaviour of a myopic agent,

with a strategy that is given by q(t) = 1. Given our initial stock levels myopic behaviour of

the subjects will take the stock to 0 in finite time. See Appendix B for more on description

of myopic behaviour.

5.2 Distribution of Steady States

Every equilibrium strategy we consider supports a stable steady state of the stock and

extraction. Thus we begin our analysis of the results by obtaining the distribution of steady-

states in the data. First, we define a steady state and show how we identify one in choice

data. Second, we present the distributions of steady states by game and by treatment.

The problem of identifying the time of convergence of a process for the purpose of charac-

terizing a steady-state is well-known in computer simulation literature, which is convenient

for our application because of our need to identify the time of the theoretical steady state
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Figure 5: Examples of Different Actual Extraction Behaviours
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Figure 6: Examples of Actual Total Extraction Time Paths
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Figure 7: Locating the Steady State
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both for experimental design and for comparison with subject behavior. Many computer

simulations, such as Markov Chain Monte Carlo methods in Bayesian analysis, result in a

“warm-up” or “burn-in” before reaching steady-state. In some cases, one can simply run the

algorithm well into a point where a steady state has been obviously reached. In our case,

we first must identify if a steady state exists. If so we wish to accurately and automatically

identify the extraction rate.

Several algorithms exist for automatic detection of a steady state. The algorithm we

chose is called MSER-5 (Mean Squared Error Reduction or Marginal Standard Error Rule).

We chose this method because it is automatic, easy to understand and implement, and robust

for our application. Roughly, the algorithm deletes data points in steps from the beginning

of a series, recursively computing the standard error of the mean or MSER statistic of the

truncated sample. The truncated sample with the smallest MSER contains the data points

that are at the steady state.13

Figure 7 illustrates the identification of steady states using the MSER-5 algorithm. The

two panels show the time series of the total extraction rate (the sum of the two players’

extraction rates) by five second batch means, in an actual game in two different experimental

sessions. The MSER-5 statistic is depcited by the dotted line, while the extraction rate is

given by the solid line. In the top panel, the steady state level is identified just after 200

seconds in the game. In the bottom panel it is identified at approximately 175 seconds. Note

that the algorithm does not always identify a steady state from the data. If the MSER-5

continues to fall throughout the entire series , a steady state is not reached. We found that

running this procedure on all of our data results in intuitively reasonable inference as shown

in Figure 7.

Figure 8 presents the histogram of steady states for all the play that reached a steady

state in the experiment. The figure gives a broad overview of the performance of the subject

13For the details of MSER-5 algorithm see Appendix C.
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pairs. Notice the mode at a total extraction rate of two, which is jointly the most efficient

(abstracting from the time path to this steady state). There appears to be another mode at

one, but every possible extraction rate between zero and two appears at least two percent of

the time. There are relatively few, but more than zero, steady state extraction rates above

two. Overall the histogram shows a rich degree of heterogeneity of reasonable outcomes that

could be the result of equilibrium strategies.

Table 2 shows the percentage of player pairs that reached a steady state by treatment

for every game for pay. At least 61% of the pairs reached a steady state in every game, and

the mean steady state total extraction rate was at least 1.2 for every game. The table also

indicates the ranges of steady-states reached in each game. We can conclude from this table

that in every game in each treatment the majority of behavior resulted in steady-state stock

management.

Table 2: Percentage of Games Reaching a Steady State

Treatment 1 Treatment 2

(So = 7) (So =14)

(%) mean range (%) mean range

Game 5 70% 1.36 0.04-2.16 65% 1.48 .34-2.99

Game 6 79% 1.2 .02-2.06 65% 1.4 0.28-3

Game 7 64% 1.37 0-2.01 71% 1.49 0.54-2.1

Game 8 70% 1.49 0.25-2.4 65% 1.53 0.31-3.3

Game 9 61% 1.26 0.01-2.1 62% 1.6 0.08-2.36

Game 10 67% 1.46 0.05-2.37 71% 1.56 0.14-2.8

Focusing on games 6, 8 and 10 (which were each the last game in a set of identical games),

we conducted a Kolmogorov-Smirnov test for the difference in steady state distributions

across games within treatments. For both treatments, we cannot reject the null hypothesis
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that the distributions across the different games are identical. We then pooled across all

games within each treatment to test for a difference in behavior across the treatments,

where we rejected the null that the pooled distributions are identical.

For a look at these distributions, Figure 9 presents a density estimate of the distribution

of steady-state total extraction rates for each of our two experimental treatments. In Figure

9, the horizontal axis of the density estimate represents the steady state total extraction rate.

The solid graph shows the density estimate for the initial stock of seven and the dashed graph

presents the density estimate for the initial stock of fourteen. Three features are striking.

First, the distribution of steady states is bimodal in both treatments. Second, the mode

centred on the total extraction rate of two is nearly identical in both treatments. Third, the

mode below two is shifted to the right for the treatment with the higher initial stock.

Recall that raising the initial stock simply eliminated the worst set of non-linear aggressive

strategies from the set of equilibrium strategies. The effect of eliminating these strategies

appears to have had no effect on the groups of players who achieved the maximum stock level

extraction rate, i.e. the minimally aggressive player pairs. Conversely, eliminating non-linear

strategies has the effect pushing the more aggressive player pairs in the direction of, but not

achieving, best steady state.

Our experimental treatment thus allows us to divide player pairs according to whether

they are minimally aggressive or not. Eliminating the worst aggressive equilibria does not in-

duce minimum aggression, and has no effect on those players who are already less aggressive.

This gives us a large clue as to how people play the game.

Finally we conducted a test for symmetry of extraction strategies among the subject pairs.

We used the heuristic of dividing the total extraction rate by two, and then determining

whether both players’ extraction rates were within 10% of this number. Of the 270 games

that reached steady-state, 144 were symmetric by this definition. Figure 10 shows a scatter

plot with the steady state extraction rates of one of the two players on each axis. The
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Figure 8: Distribution of Steady States
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Figure 9: Distribution Steady States By Treatment

red data points along the forty-five degree line indicate the games in which both players’

extraction rates were within 10% of the mean extraction rate in the steady state. The figure

shows a wide variety of asymmetric steady-state extraction rates as well as the roughly half

of the symmetric games along the 45 degree line.

Having obtained evidence for a variety of steady states as well as a significant amount of

symmetric extraction, we now turn to the question of what strategies the players are using,

and how they can help us predict the level of cooperation achieved in the game.

5.3 Extraction Strategies

Having documented the existence and distribution of steady states in the choice data, and

having found that in roughly half of the cases with steady states the extraction rates were

symmetric, we now test for linearity in the extraction strategies, the central question of the

paper. For the purpose of building an empirical model, recall that the non-linear equilibrium
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Figure 10: Player 1 vs. Player 2 Steady State Extraction Rates
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strategies do not have an explicit functional form. However, we can approximate these

strategies by a quadratic function of the stock level of the following form:

q = α + γS + θ(S)2,

where q denotes the extraction rate and S denotes the stock level of the resource. This model

would be sufficient to closely describe any theoretical strategy. In fact the R-squared on sim-

ulated data is typically in the neighborhood of 0.99 for any strategy we tested. However, we

would like to include variables that might influence decision-making that are not considered

in our theoretical model. Reasonable candidate variables are the own lagged extraction rate,

(an indicator of smoothing), the extraction rate of the other paired subject (present if one

subject followed the lead of the other), and time (which would indicate a holding strategy

to allow the stock level to build up). All of this leads to the following general model:

qt = β0 + β1St + β2(St)
2 + β3qt−1 + β4qother,t−1 + β5t+ et

where qt is the current extraction of the subject, St is the current stock level of the resource,

qt−1 is the lagged extraction rate, qother,t−1 is the lagged extraction rate of the paired subject,

t is the time of the extraction rate decision in seconds, and et is the error term.

Ideally we would run a pooled regression on our panel data, but the distribution of steady

states presented in the previous section suggests a large degree of heterogeneity that would

not be captured in such a model. Thus we run subject-by-subject individual regressions for

each game. Such a collection of regressions on 804 sets of individual choice data presents

challenges in presenting the results. These challenges stem from at least two sources: (1)

how to report coefficient estimates and (2) how to select the appropriate specific model for

each individual regression.
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To attack the problem of model selection, we used the general to specific modelling

approach, which searches for the most parsimonious restriction of the general model that

conveys all of the information in the general model, and within which does not exist a nested

model that also conveys this information (Hoover and Perez, 1999). We take this final model

as the inferred empirical strategy of a subject in a particular game.

Note that extraction rates do not go below zero, and in the theoretical model no equilib-

rium strategy involves an extraction rate above one (which delivers the maximum instanta-

neous payoff, regardless of how large the stock level becomes). We observe similar empirical

lower and upper bounds in the choice data. For some subjects, we observe a lower bound in

the form of a constant low initial extraction rate, held constant apparently to allow the stock

level to grow. We also observe an upper bound in the form of the steady state extraction

level. Therefore we run a two-limit Tobit regression, with empirical lower limits and an

upper limit of one.

In the data, there are 804 sets of choice data, each set consisting of a subject making

extraction decisions in one of the the six game s/he plays with another subject for pay.

Each game can last for up to 240 seconds. Every game contains all of the data specified in

our general empirical model. Our computer algorithm for model selection for the extraction

decision is detailed in Appendix C.

Table 3 and 4 presents a summary of the variables that comprise the estimated extraction

strategies. In Table 3, each row corresponds to a particular model. For example, the first

row presents statistics for strategies that have a linear component in the state variable. The

second row presents information for strategies that have a non-linear component in the state

variable and the third row is for strategies that do not condition at all on the state variable,

which we call rule of thumb strategies.14 Note that each row adds to 100%. The columns

14 These strategies typically take the form of little or no extraction until the stock level builds to a higher
level, at which time constant extraction is used. Many variants of these exist in the data. The ideal form
of such a strategy is: q(S) = 0 if 0 ≤ S < 28.57 and q(S) = 1 if S ≥ 28.57. See more on rule of thumb
strategies in Appendix B.
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represent the subset of data analysed. For example, the first column represents treatment 1,

the third column represents all of the data, and the fourth column is for data that contains

a steady state.

Table 3: Types of Estimated Strategies

Trearment 1 Treatment 2 All All SS

Linear in Stock 24.74% 30.92% 27.89% 25.92%

Non-linear in Stock 59.60% 55.86% 57.72% 57.04%

Rule of Thumb 15.66% 13.22% 14.39% 17.04%

‘Linear in Stock’ implies non-zero coefficient for S and zero coefficient for S2 in the estimated strategy.

‘Non-inear in Stock’ implies non-zero coefficient for S2 in the estimated strategy.

‘Rule of Thumb’ implies zero coefficients for S and S2 in the estimated strategy.

Table 4: Non-Theoretical Conditioning Variables

Trearment 1 Treatment 2 All All SS

Depends on Lag Extraction 92.93% 96.51% 94.73% 97.41%

Depends on other’s Lag Extraction 50.25% 49.63% 49.94% 48.89%

Depends on Time Elapsed 56.31% 52.37% 54.33% 52.59%

The table provides the first evidence for or against empirical equilibrium strategies. No-

tice that across the board, roughly one-quarter of the models selected are linear in the stock

variable; over half are non-linear in the stock level; and roughly 15% are what we call rule

of thumb, i.e., do not condition on the stock level at all. With regard to the two treatments,

there was a slight shift into linear models and out of non-linear and rule of thumb models

from treatment one to treatment two. And the largest difference in models selected between

games with and without a steady state was the increase in rules of thumb in games with

steady states. Subjects appear to be allowing the stock level to increase before beginning

their extraction. This finding is similar to a finding in Janssen, et al. (2010). A common
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strategy similar to our rule of thumb strategy was discussed and implemented in their com-

munication treatment, where the players wait without harvesting for a time span to let the

resource grow.

Table 4 provides a quick summary of the control variable content of the selected models.

Briefly, the table confirms that there is nearly always inertia in the setting of the extraction

rate, that roughly half the time extraction strategies condition on the extraction rate of the

other paired subject, and that half of the strategies condition on time (for the most part,

increasing extraction with time, controlling for all other explanatory variables).

Table 5: Distribution of Steady States by Strategy Type

Treatment 1 Treatment 2 Both

(So = 7) (So =14) Treatments

Mean SD obs Mean SD obs Mean SD obs

Linear in Stock 1.226 0.73 62 1.34 0.67 78 1.29 0.7 140

Non-linear in Stock 1.295 0.71 156 1.52 0.6 148 1.408 0.67 304

Rule of thumb 1.69 0.59 52 1.72 0.54 44 1.7 0.56 96

The central result of Table 5 is the statistically significant improvement of steady state

stock levels among the non-linear strategies from Treatment 1 to Treatment 2 (a Kolmogorov-

Smirnov test rejects the null hypothesis of equality at better than 5%). By contrast, a

Kolmogorov-Smirnov test fails to reject the null of equality of the steady state distributions

between treatments for the estimated strategies linear in stock. Recall that higher initial

stock eliminates some of the more aggressive non-linear strategies in our theoretical solution.

Here we find that in Treatment 2 starting with higher initial stock improves the steady state

reached by the strategies non-linear in stock.

Having described the variables that are contained by the empirical strategy models, we

report the average of the estimated coefficients on the state variables for estimated strategies

non-linear in stock. This information is provided in Table 6, where the mean coefficient on
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Table 6: Distribution of Coefficient Estimates for the Non-linear Strategies

Treatment 1 Treatment 2

(So = 7) (So = 14)

mean SD range mean SD range

S -0.01437 0.2366 -2.78 - 0.638 0.0326 0.335 -1.43 - 1.947

S2 0.00018 0.0042 -0.029 - 0.035 -0.000437 0.01176 -0.0628 - 0.58

the stock and stock-squared variables are presented for both treatments. In this table we

have a result: a one tail t test shows that the mean coefficient of stock is significantly smaller

in treatment 1 at the 10% level (p value = 0.0805).

The central result of Table 6 builds on that of Table 5. Although we do not reject the

null of equality of the mean of coefficient of stock squared between the treatments in a one

tail t test, the estimated coefficient on stock increases from Treatment 1 to Treatment 2, and

decreases on stock-squared. Thus both coefficients from Treatment 1 to Treatment 2 move in

the direction predicted by less aggressive non-linear equilibrium strategies. The conclusion is

that increasing the stock level decreases the aggressivity of the non-linear strategies employed

by players in this game.

6 Discussion

It is worthwhile to compare our experiment to the experimental literature on common pool

resource problems, which have been studied mostly in discrete time with a wide variety of

institutional manipulations. One such manipulation involves communication as a method to

endogenously form rules for commons self-governance (Ostrom et al., 2006). Many others

have been tested as well.

Herr et al. (1997) and Mason and Phillips (1997) study a common pool resources game

with both static and dynamic externalities. Mason and Phillips (1997) investigates the effect
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of industry size on harvesting behaviour. They use infinitely repeated games to show that

cooperation generated by repeated interaction with small industry size helps to mitigate

tragedy of the commons in the presence of static externality, but it does not help in the

presence of dynamic externality. The common pool resource problem in an intergenerational

setting has been studied in Fischer, et al. (2004) and Chermark and Krause (2002).

Vespa (2011) studies types of strategies used to sustain cooperation in a dynamic common

pool resource game in discrete time with a small discrete choice set. His study shows that

Markovian strategies are well representative of behaviour in such environment. In a dynamic

public good game Battaglini et al. (1012b) shows similar results and predicts that complexity

of the choice set likely to increase application of Markovian strategies.

Janssen et al. (2010) use an experimental environment to closely approximate the field

settings to study common pool resource problems. To mimic the field the experiment include

both spatial and temporal dynamics and subjects make decisions in real time. They test the

role of communication and costly punishment to improve cooperation.

Our experiment is different in several ways. First, in our experiment, the only dynamic

externality is in terms of future availability of the resource. Second, our choice space and

state space is continuous. Third, agents interact in real time. Fourth, we a have continuum

of non-cooperative Markovian equilibrium strategies including one that can support the best

steady state. With our basic results in hand, our experimental setting admits the types of

institutional manipulations that have been tested in these other environments.

7 Conclusions

We presented an experiment in which subject pairs harvested a renewable resource in real

time. We tested this institution under two different experimental manipulations. First, we

started the game along three different equilibrium paths. Second, we started the game with
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different initial stock levels, holding constant the initital equilibrium path. We found the

former had no effect on behavior, but the latter manipulation had an effect.

We found evidence for strategies with both linear and non-linear components of the state

variable, as well as rule-of-thumb strategies. The fact that there is evidence for the use of non-

linear extraction strategies is important and has implications for several areas of application

of differential games such as in capital accumulation games, dynamic oligopolies with sticky

prices, stock public good games or shallow lake pollution games where a continuum of non-

linear equilibria were shown to exist.15

We found that play evolves over time into multiple steady states. Among the subject

pairs that reach a non-zero resource level in the steady state, we found a bimodal distribution

of steady states, indicating two different levels of aggressivity of resource extraction. Rule

of thumb strategies involved setting a very low or a zero extraction rate to quickly increase

the stock level to the point where it supports a high steady state extraction rate.

When we eliminated a set of non-linear strategies, contrary to an absence of a theoretical

prediction, we found increased cooperation within the more aggressive pairs coming from

an improvement in the non-linear strategies they employ. Further evidence regarding the

strategic weight placed on the square of the stock level led us to conclude that eliminating

the worst non-linear strategies (off the path of the initial equilibrium) improved outcomes

among the groups that employed non-linear strategies. On the other hand, different initial

resource extraction rates, i.e., different initial equilibrium paths, had no measured effect on

behavior.

Our results have implications for the management of non-renewable resources. First,

while many strategies resemble the form of equilibrium strategies, good outcomes were

achieved with the simple technique of focusing on raising the stock level before extracting

significant amounts of the resource. Our conjecture is that in the presence of competitive

15See Kossioris, Plexousakis, Xepapadeas and de Zeeuw (2011) for the case of shallow lake pollution game.
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extraction, and the strategic uncertainty it creates, this rule of thumb behavior represents a

safe method for managing the resource. And this method results in steady-state extraction

leves similar to the (best) linear equilibrium.

Second, the sensitivity of the more aggressive non-linear strategies to the initial stock

level suggests that improvement in renewable resource extraction may be attained by ensur-

ing a healthy initial resource level. Policies that ban extraction or that ban extraction on

a subset of the resource, for example fish below a certain size, allowing the builiding up of

the stock of the resource now have an empirical foundation as a result of our experimental

findings. Our results suggest that such a policy may permanently increase the stock level

through resulting improvement in extraction strategies.
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Appendix B : Proofs and Derivations

Non Cooperative Equilibria

Proof of Proposition 1 and 2

Given the Hamilton-Jacobi-Bellman equation (HJB), associated with the problem of agent

i (Dockner et al, 2000) :

rVi(S) = max [qi(t)−
qi(t)

2

2
+ V ′i (δS(t)− q1(t)− q2(t))] (1)

The F.O.C. is

q∗i =


1− V ′i , if V ′i ≤ 1

0, if V ′i > 1

Note that qi = 1 if V ′i = 0. Given the nature of our problem V ′i < 0 is not possible as there

is no cost of having too much stock.

By substituting the first order condition in HJB and imposing symmetry we obtain

rV (S) = (1− V ′)− (1− V ′)2

2
+ V ′(δS − 2(1− V ′)) if 0 ≤ V ′ ≤ 1

rV =
(1− V ′)(1− 3V ′)

2
+ δSV ′.

Taking the derivative with respect to S gives

(r − δ)V ′ = (−2 + 3V ′ + δS)V ′′. (2)

The condition

−2 + 3V ′ + δS 6= 0

is necessary for the value function to be continuously differentiable, which is needed for our

solution method (Rawat, 2007). The equality

−2 + 3V ′ + δS = 0
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gives us the non-invertible locus,

q =
1 + δS

3
. (3)

Now if we define p = V ′ we can write (2) as

(r − δ)p = (−2 + 3p+ δS)
dp

ds
,

or

ds

dp
=

(−2 + 3p+ δS)

(r − δ)p
.

Then the family of solution is given by

S(p) =
2

δ
− 3p

2δ − r
+ Cp

−δ
−r+δ , (4)

where C is the constant of integration. A solution V (S) to the Bellman equation can be

implicitly described in a parametric form

rV (p) =
(1− p)(1− 3p)

2
+ δSp,

S(p) =
2

δ
− 3p

2δ − r
+ Cp

−δ
−r+δ .

Each value of C generates a candidate value function. The corresponding candidate equilib-

rium strategy is given by

S(q) =
2

δ
− 3(1− q)

2δ − r
+ C(1− q)

−δ
−r+δ . (5)

We can define a subgame perfect Markov Nash equilibrium (φ∗, φ∗) setting C = 0 such as

φ∗(S) =
2r

3δ
− 1

3
+

(2δ − r)S
3

. (6)
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More specifically, the equilibrium is characterized by

φ(S) =


0, for S < δ−2r

δ(2δ−r)

2r
3δ
− 1

3
+ (2δ−r)S

3
, for δ−2r

δ(2δ−r) ≤ S ≤ 2
δ

1, for S > 2
δ

and the value function

V (S) =



e−rt(S)V ( δ−2r
δ(2δ−r)), for S < δ−2r

δ(2δ−r)
∞∫
0

(φ(S)− φ(S)2

2
)e−rtdt, for δ−2r

δ(2δ−r) ≤ S ≤ 2
δ

0.5
r
, for S > 2

δ

where, t(S) is such that δ−2r
δ(2δ−r) = Seδt(S).

The following figure shows some of these candidate strategies for the range of values of

C from −3 to 3 and for parameter values r = 0.005 and δ = 0.07.
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The red thick line is the steady state line defined by q = δS
2

, and the light blue thick line

is the non-invertible locus, along which dq
dS

= ±∞ (Rowat, 2007). The thin curves are can-

didate strategies. As the strategies left to the linear strategy intersect the non invertibile

locus they cease to be functions, therefore the strategies left to the linear strategy starting

from the horizontal axis up to the non invertibile locus characterized the locally defined

non-linear Markov-perfect equilibrium strategies. The candidate strategies to the right of

the linear strategies can be dismissed by the argument of “profitable deviation from their

play” (Rowat,2007, Dockner and Wagener, 2013) . As these strategies always lie bellow the

SS line stock will be ever growing, and at some point in time the the stock will reach 2
δ
.

After this point it is always profitable to set q = 1.

Steady States

A steady state level of resource is determined by

S(q) =
2

δ
− 3(1− q)

(2δ − r)
+ C(1− q)

−δ
δ−r and δS = 2q.

A steady state is therefore a solution of

2

δ
− 3(1− q)

(2δ − r)
+ C(1− q)

−δ
δ−r =

2

δ
q

or

[
2

δ
− 3

(2δ − r)
](1− q) + C(1− q)

−δ
δ−r = 0.

Now for C 6= 0 the steady state extraction and stock corresponding to different values of

C are given by

qss = 1− (
2r − δ

Cδ(2δ − r)
)
r−δ
2δ−r

Sss =
2

δ
(1− (

2r − δ
Cδ(2δ − r)

)
r−δ
2δ−r ).
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For C = 0 the steady state extraction rate and stock levels are given by

2

δ
− 3

(2δ − r)
=

δ − 2r

δ(2δ − r)
6= 0

qss = 1

Sss =
2

δ
.

Stability of Steady States

At the steady state stability requires

dṠ

dS
< 0

or

δ − 2
dq

dS
< 0

or

dS

dq
<

2

δ

or

3

2δ − r
+

δ

δ − r
C(1− q)

−δ
δ−r−1 <

2

δ
,

where for C 6= 0, q is given by the steady state extraction rate

qss(δ, r, C) = 1− (
2r − δ

Cδ(2δ − r)
)
r−δ
2δ−r ,

and for C = 0 the stability of the steady state requires (given 2δ − r > 0)

3

2δ − r
<

2

δ
.

Therefore as long as 2δ − r > 0 and δ − 2r > 0 the steady state of the linear strategy is

stable.
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Time Paths

The time path of the stock and extraction rate for the linear strategy can be derived as

follows

˙S(t) = δS(t)− 2φ∗(S)

or

˙S(t) = δS(t)− 2(
2r

3δ
− 1

3
+

(2δ − r)S
3

).

Therefore with

˙S(t) = S(
2r − δ

3
) +

2

3
(
δ − 2r

δ
) and S(0) = S0,

we obtain the solution for the time path of the stock and the time path of the extraction

rate when the players are using the linear symmetric Markovian equilibrium strategy

S(t) =
2

δ
+ [So− 2

δ
]e−( δ−2r

3
)t

q(t) =
2r

3δ
− 1

3
+

(2δ − r)S(t)

3
.

To obtain an expression for the dynamics of the stock level and extraction rate for any

symmetric Markovian equilibrium strategy, including the linear strategy, we proceed as fol-

lows. Since we cannot obtain an analytical expression for ˙S(t) as a function of S(t), we

instead express ˙p(t) as a function of p(t) where p(t) = 1− q(t) from

S(p) =
2

δ
− 3p

(2δ − r)
+ Cp

−δ
δ−r

or

˙S(t) = ˙p(t)(C(
δ

r − δ
)p(t)

r−2δ
δ−r − 3

2δ − r
).

We thus have

˙S(t) = δS(t)− 2q(t),
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or

˙S(t) = δ(
2

δ
− 3p(t)

(2δ − r)
+ Cp(t)

−δ
δ−r )− 2(1− p(t)).

Therefore

˙p(t) =
˙S(t)

C( δ
r−δ )p(t)

r−2δ
δ−r − 3

2δ−r

˙p(t) =
δ(2

δ
− 3p(t)

(2δ−r) + Cp(t)
−δ
δ−r )− 2(1− p(t))

C( δ
r−δ )p(t)

r−2δ
δ−r − 3

2δ−r

.

Now we obtain a first order non-linear differential equation which can be solved numeri-

cally for p(t) using, e.g., routines such as ode45 in MatLab. We can then recover q(t) and S(t).

Cooperative Solution

In the cooperative solution the players maximize the discounted sum of their joint payoff

Max(Ji + Jj) =

∞∫
0

(ui(qi(t)) + uj(qj(t)))e
−rtdt

s.t.

˙S(t) = δS(t)− qi(t)− qj(t)

S(0) = S0.

Assuming δ > r and qi(t) = qj(t) = q(t) we can derive the Markovian cooperative

extraction strategy
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q(S) =


0, for S < 2δ−2r

δ(2δ−r)

r
δ
− 1 + (δ − r

2
)S, for 2δ−2r

δ(2δ−r) ≤ S ≤ 2
δ

1, for S > 2
δ
.

The time path of the stock level and extraction rate in the cooperative solution are

S(t) =
2

δ
+ (S0 −

2

δ
)e(r−δ)t

q(t) = 1 +
δ

2
(2− r

δ
)(S0 −

2

δ
)e(r−δ)t.

Myopic Agent

If we consider myopic agent, then q(t) = 1 which gives the state evolution as S(t) = [S(0)−
2
δ
]eδt + 2

δ
. That is if we start with stock > 2

δ
the stock will explode over time. If we start

with stock < 2
δ

the stock will tend to 0 over time. And if it is equal to 2
δ

it will stay there

(Rowat, 2007).

Rule of Thumb Strategy

We can imagine rule of thumb strategies, that could be behaviourally relevant, where extrac-

tion behaviours can be described bu keeping a low extraction level and waiting for the stock

to increase and then switching to the best extraction rate. These strategies can be described

as stationary Markovian strategies which are piecewise continuous. An example of such an

strategy is

q(S) =


0, if 0 ≤ S < 28.57

1, if S ≥ 28.57.
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Appendix C : Identifying a Steady State in the Choice

Data

The problem of the identification of a steady-state in the data is illustrated in Figure 11.

The two panels show the time series of the total extraction rate (the sum of the two players’

extraction rates) in an actual game in two different experimental sessions. The top panel

shows the total extraction rate converging to the maximium extraction rate level in just under

200 seconds. The challenge of an automated convergence algorithm is to not terminate at

either of the two lower levels where the extraction rate flattened out, after 100 seconds

and 150 seconds respectively. The bottom panel shows a second extraction rate time path.

Notice that the extraction rate evens out between 50 and 100 seconds into the game, but

then increases and flattens out again later. We would like to identify the second of these

intervals as the steady-state.

The problem of identifying the time of convergence of a process for the purpose of char-

actizing a steady-state is well-known in computer simulations. Essentially, many computer

simulations, such as Markov Chain Monte Carlo methods in Bayesian analysis, begin with

a “warm-up” or “burn-in” before reaching steady-state. In some cases, one can simply run

the algorithm well into a point where a steady state has been obviously reached. In our case

this is not possible. Several algorithms exist for automatic detection of a steady state. The

algorithm we chose is called MSER-5. The algorithm works as follows.

Consider the sequence

Yi; i = 1, 2, ....n

with the initial condition Y0, and where the Y ’s correspond to total extraction rate batch

mean, i.e., the average of the total extraction rate in blocks of five seconds. The notational

indices are in consecutive blocks of five seconds. Then the steady state mean is defined as
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Figure 11: Locating the Steady State
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µ = lim
i→∞

E[Yi|Y0].

The MSER-5 estimates the steady state mean using the truncated sample mean. The

truncated sample mean is defined as

Ȳn,d =

∑n
i=d+1 Yi

n− d
.

The time in the series at which the steady state is first identified is called the optimal

truncation point. It defined as

d∗ = min
n>d≥0

[

∑n
i=d+1(Yi − Ȳn,d)2

(n− d)2
].

Three intuitions apply to this method. First, it minimizes the width of the marginal

confidence interval of the estimate of the steady state mean (White and Robinson, 2010).

Second, it has been shown that the expected value of MSER is asymptotically proportional to

the mean-squared error of the estimate of the steady state mean (Pasupathy and Schmeiser,

2010). Third, the MSER truncates the stock level sequence such that the truncated mean

defines the best constant regression for any truncated sequence in the sence of weighted

mean squared error (White and Robinson, 2010) , thus the method is analogous to regres-

sion analysis. Intuitively, using five period block averages of the total extraction rate ensures

monotonic behavior of the statistic. If the MSER-5 continues to fall throughout the entire

series, a steady state was not reached. More specifically we say that a steady state is reached

in a data series if the minimum MSER-5 is reached at least 10 seconds before the game ends.

The following contains some specific details on applying MSER-5 in our particular ap-

plication.

52



1. When the stock goes to zero it is possible that the total extraction stays steady at

some positive level. But this is not a steady state behaviour. Therefore we rule out all plays

that ends with a zero stock level from achieving steady state.

2. The linear strategy takes the longest time to reach the steady state. When the initial

stock level is 7 it takes the linear strategy 222 seconds to reach within 99% of steady state

and for the initial stock level of 14 it takes 202 seconds. Therefore if the player’s strategy is

close to the linear strategy, since it gradually approaches the steady state, it is possible that

by 230 seconds the total extraction is still growing and our algorithm will show no steady

state reached. We observe several cases like that in the data. To adjust for this we assume

that the play is approaching a steady state if MSER-5 keeps falling till the end of play and

the end stock is close to the linear strategy steady state (the linear strategy steady state

stock is 28.57, and we say the stock is close to it if it is ≥ 28. The strategy that reaches the

steady state stock level of 28 reaches 99% of the steady state stock level in 176 seconds). All

the main results of of steady state analysis remain qualitatively same if we do not make this

adjustment.

Appendix D : General-to-Specific algorithm

Given our strategy of subject-by-subject regression analysis, we require an objective method

for automatic model specification. One approach would be to simply include all the regressors

in all of the models and report the distribution of point estimates that results. The approach

we chose is to use a general-to-specific algorithm to present the best model from the space

of all possible models for each indivdual.

Since there is apparent smoothness in the extraction behaviour, a multipath search for

the optimal specification of a dynamic model is required (Castle, Doornik and Hendry, 2011,
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Mizon,1995). Hendry and Krolzig have developed the PcGets software for just such an au-

tomated model selection. In our case, we require a two limit tobit model for our empirical

strategy estimation. PcGets current version does not include automatic econometric model

selection for censored models. Therefore we ran our own multipath search general-to-specific

model selection algorithm according to the principle of the “Hendry” or “LSE” Methodology

(Hoover and Perez, 1999, Hendry and Krolzig, 2001 and Doornik, 2009).

Our model has 5 candidate regressors giving 25 possible models to fit the data. We select

one of these models according to the following multipath search algorithm:

Stage 1 : We begin by estimating the general unrestricted model (GUM). Given that we

have 5 regressors in our GUM, we start five different reduction paths. Each path begins with

a four regressor restricted model (RM4) dropping one of the regressors in the GUM. We con-

tinue through the path if the restricted model encompasses the GUM, i.e., if the restricted

model is not rejected in favor of the GUM. We use a likelihood ratio test for the validity

of the restriction for each of the five restricted models (setting our criterion for rejection at

the 5% level). If none of the restricted models encompasses the GUM, we are left with the

GUM as our final model for the data set.

Stage 2 : If any reduction path from stage 1 continues, that is, if any of the five re-

stricted models encompasses the GUM, we introduce four new reduction paths. One of the

four regressors from the particular RM4 from stage 1 is deleted to generate a new reduction

path, where the new restricted models (RM3) are models with three regressors. If none of

four the restricted models encompasses the particular RM4, we are left with that RM4 as

our terminal model along that reduction path. We continue down a new path only if the

particular nested RM3 encompasses its RM4. Otherwise the reduction path is terminated.
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Stage 3 : New reduction paths from stage 2 continue if any of the RM3 encompass the

RM4. The current RM3 introduces three reduction paths in a similar manner as the earlier

stages, where the new restricted models (RM2) are models with two regressors. If none of

the three restricted models encompasses its associated RM3, we are left with that RM3 as

our terminal model along that reduction path. Otherwise we continue through all the new

reduction paths where the RM2 encompasses its RM3. If a RM2 does not encompass the

RM3 the reduction path is terminated.

Stage 4 : New reduction paths from stage 3 continue if the any of the RM2 encompasses

the RM3. The current RM2 introduces two reduction paths in a similar manner as the earlier

stages, where the new restricted model (RM1) are models with one regressor. If none of two

restricted models encompasses its RM2, we are left with that RM2 as our terminal model

along that reduction path. Otherwise we have the RM1 as one of the terminal models if it

encompasses the RM2 it is nested in.

Stage 5 : When we obtain multiple terminal models (most of the time non-nested), we

use the minimum Akaike Information Criterion to decide on the final model.

As an example, suppose we name the regressors as 1, 2, ...., 5. The Figure 13 demon-

strates a portion of the search tree. The figure shows all the reduction paths initiated from

the reduction at stage 1 by dropping regressor 3. The bold green paths show two hypothet-

ical search paths resulting in two candidate terminal models.
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Figure 12: Hypothetical search paths
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