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Disclaimer

• The models and analyses presented here are exclusively part of 

a research effort intended to better understand the strengths 

and weaknesses of various approaches to evaluating model 

performance and interpreting credit market pricing data.

• No comment or representation is intended or should be inferred 

regarding Standard & Poor‟s ratings criteria or models that are 

used in the ratings process for any type of security. 
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Introduction
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Themes

• Questions:

– What credit risk information is embedded in the market price of a 

credit-risky instrument?

– How does the market price-derived credit risk measure 

complement fundamental credit analysis?

• Related Questions:

– How do you measure the effectiveness of a model for 

determining credit risk?

– What credit market price information is available now to drive 

models?
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Definition and Focus of Credit Risk

• Credit Risk – The risk of not receiving timely principal and interest 

payments set forth according to financial contracts

• Primary focus of credit models:

– Single Obligor Default Risk (Probability of Default – PD)

– Single Obligor Credit Quality Transition/Deterioration Risk (Transition 

Matrices)

– Portfolio Credit Risk (Correlation, Default Dependencies)

– Recovery Estimation (Loss Given Default – LGD)

– Exposure at Default (Bank Loan Portfolios)
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Evolution of Credit Models -

A Brief Incomplete History
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Evolution of Credit Models – 1980‟s and earlier

• The credit business was mostly „buy and hold‟.  Investment grade 

corporate bond portfolios for institutional investors and retail bond 

funds, investment grade portfolios of corporate and prime consumer 

loans.  Trading was often driven by interest rate risk.

• Late 80‟s saw rise of high yield bonds and early CDOs – first credit 

derivatives.

• Shorting or hedging credit risk was difficult – limited ability to sell 

loans (some syndications of large loans to highly rated companies).

• Analysis and Modeling:  Fundamental, qualitative assessment of 

individual obligors – „loan to those you know‟.  Capital charges 

typically fixed.  Large concentration risk and inefficient use of capital in 

bank portfolios.  Illiquid debt market – not much to calibrate models to.  

Merton Structural Models for Probability of Default and bond pricing 

based on equity markets had not found practical application.
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1990s - The Expansion of Credit Markets

• Credit Derivatives begin to grow – total return swaps on bonds, 

credit default swaps, CBOs, synthetic CDOs referencing bank 

loan portfolios – first opportunities to efficiently short, hedge 

and securitize credit risk to create customized credit risk 

profiles.

• Corporations tend to more leverage, lower credit quality – fewer 

extremely high grade bond issuers.  Investors attracted to highly 

rated securitized debt.  Securitization of consumer loans 

(mortgages, auto, credit cards, student loans, …) grows.

• Concept of „Active Credit Portfolio Management‟ forms – Credit 

Value-at-Risk, risk-adjusted capital allocation, marginal capital 

for investment decisions, measures of concentration risk and 

diversification benefits.  Banks measure economic capital.
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1990s – The Rise of Credit Default Models

• Merton-style Structural Models for Probability of Default prove 

effective and commercially viable with KMV as an industry 

leader.  This provides a more dynamic, equity market-based 

view of credit quality to compliment fundamental analysis.

• Reduced form default intensity models to price bonds and 

options are introduced (Jarrow and Turnbull).

• Regression-based PD models incorporating firm-specific 

financial ratios and macro-economic variables prove effective, 

particularly for private firms when sufficiently large default 

databases are collected.

• Mortgage foreclosure frequency and loss severity models 

appear based on consumer characteristics and loan properties.
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1990s – The Rise of Credit Portfolio Models

• KMV and RiskMetrics develop credit portfolio models in 

structural model framework with joint default dependencies 

derived from equity market correlations.  KMV model captures 

changes in portfolio value due to both credit quality transitions 

and default and becomes a benchmark economic capital model 

for large banks.

• Default Time models with a Gaussian copula used to create joint 

default dependencies are introduced (Li) and widely adopted for 

pricing portfolio credit derivatives.

• Basel I is adopted to bring uniformity to capital measures in the 

banking industry and Basel II development begins.
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2000 - 2007 – Active Credit Markets Grow Rapidly

• Structured Finance markets experience a huge growth in 

securitization of mortgages, including new mortgage products 

(subprime, Alt-A, ARMs, etc.).  

• CLOs market grows fueled by increasing leveraged loan lending 

and private equity. 

• CDS market explodes and overtakes cash bond market in 

notional traded.  

• CDS indices introduced creating a liquid index market, as well 

as a liquid index securitization market for tranches.  

• Numerous credit derivative products are introduced or grow in 

popularity including ABS CDOs, SIVs, CDPCs, CPDOs, etc.

• By mid-decade, credit spreads are extremely tight and investors 

turn to new products for higher yield.
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2007 – 2010:  Credit Crisis Stresses Financial System

• In 2007 the housing bubble bursts, property values collapse 

sharply, and mortgage default rates begin to rise.   RMBS bonds 

and CDOs back by RMBS bonds deteriorate sharply in credit 

quality, leading to many defaults and great loss in value.

• In 2008, financial institutions with large mortgage exposure 

either fail (Lehman, Bear Stearns, Countrywide), are subject to 

distressed take-overs (Merrill Lynch, WAMU, Wachovia), or 

received extraordinary government support (AIG, Fannie, 

Freddie).

• For part of this period, credit markets freeze with little lending 

and extremely high credit spreads.

• Private mortgage securitization market mostly disappears, along 

with new-issuance in CLOs.  
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2000s – Wide Spread Adoption of Quantitative Credit Models

• KMV‟s EDFs become widely accepted as predictors of default (KMV 

acquired by Moody‟s in 2002).

• Other PD models are developed commercially (S&P, Kamakura, etc.)

• Credit Portfolio models are increasingly used for active portfolio 

management

• Default Time/Gaussian copula model becomes industry standard for pricing 

and hedging synthetic CDOs and index tranches with the introduction of 

„base correlation‟ idea

• Semi-Analytic numerical methods speed index tranche calculations

• Top-Down portfolio models are introduced for pricing index tranches to 

address Gaussian copula calibration issues

• Credit valuation models are introduced that price illiquid loans and bonds 

based on PDs and estimates of market price of risk

• Consumer asset credit models further developed
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Credit Modeling Today

• Studying Probability of Default and Credit Transition Models

• e.g. applying information decay theory for PDs at longer horizons 

• Developing new or updated models for a range of assets:

• Residential mortgages, commercial mortgages, municipal bonds, 

SMEs/private firms, consumer assets

• Incorporating credit marketing pricing data in models:

• CDS spreads, Bond OAS, House Price Appreciation indices, etc.

• Understanding fair credit value vs market prices that incoporate 

liquidity risk, counterparty risk and supply and demand

• Expanding credit portfolio models to cover more asset classes, 

better dependence modeling, credit cycle effects, correlated 

recoveries, changes in value due to credit migration, etc.

• Improving measures of counterparty risk, systemic risk and 

contagion.



16.

Credit Model Performance Measures



17.

Credit Model Performance Measures

• Credit model performance is often determined by a model‟s ability to:

– Rank obligors by default/downgrade risk to discriminate between potential defaulters 

and non-defaulters

– Anticipate realized default/downgrade rates:  compare probabilities to observed rates

• Performance evaluated with statistical measures on a validation data set

• Method 1:  Cumulative Accuracy Profile (CAP)

– Sort obligors from riskiest to safest as predicted by the credit model (x-axis) and plot 

against fraction of all defaulted obligors.   Accuracy Ratio = B / (B + A)



18.

Credit Model Performance Measures

• Method 2:  Receiver Operating Characteristic (ROC)

– Plot the distribution of model scores, R, for defaulters and non-defaulters

 Note: For a perfect model, no overlap in the distributions whereas for a random / 

uninformative model, 100% overlap (i.e., identical distributions)

– Specify a cutoff value C such that scores less than C are potential defaulters and 

rank scores higher than C are potential survivors

– Given C, 4 outcomes are possible: 

 Incorrect decisions: R < C and survive (Type II error) or R > C and default (Type I error)

 Correct decisions:  R < C and default or R > C and survive
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Credit Model Performance Measures

• Method 2:  ROC (cont.)

– Define Hit Rate (given C), HC = # of predicted defaulters/total defaulters

– Define False Alarm Rate (given C), FC = # of non-defaulters predicted to default/ 

total non-defaulters

– Plot HC vs. FC for all values of C to generate the ROC curve

– The larger the ROC (i.e. the area under the ROC curve - shaded region), implying 

higher hit rate to false alarm rate, the better the ranking model 

 Note: Hit rate corresponds to 1 – Type I Error
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Credit Model Performance Measures

• Relationship between ROC and CAP

– If the same weight is attributed to Type I vs. Type II errors, it can be shown that 

ROC and CAP communicate the same information

AR = 2 x ROC – 1

(Engelmann, Hayden and Tasche, “Testing Rating Accuracy,” Risk, January 2003)

– ROC is however a more general measure as different weights may be given to 

Type I and II errors.

 Typically, more weight may be given to Type I vs. Type II error

– Example: Giving a loan to a defaulting firm (I) vs. losing potential interest 

income by not extending credit to a non-defaulting firm (II)

We assume equivalence of ROC and CAP for this study (i.e. equal weights 

to I vs II errors)
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Performance Measures:  Independent Obligors
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Rankings based on PD vs. Default Prediction

• Typical measures: focus on correct identification of defaulters vs. non-

defaulters (binary)

• Credit models: rankings may be based on relative risk (probability or 

likelihood)

Implication: A perfect (PD based) ranking model cannot have a perfect 

Accuracy Ratio.

– Even the highly ranked “buckets” can have defaults (albeit low)

– The lowest ranked buckets can have survivors (1-PD)

• Example 

– Very large pool categorized into 10 equally weighted Risk Category (RC) buckets 

on the basis of PD  

– Safest bucket (RC1) has PD 2bp, RC2 has PD 4bp, RC3 has PD 8bp, and so on 

i.e., each subsequent bucket twice as risky in PD terms 

– Large pool (theoretically infinite) ensures realized defaults in each RC bucket 

equal expected defaults
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Rankings based on PD vs. Default Prediction (Large Pools)

PD (%) % Defaulters % Obligors

RC10 10.24% 50.05% 10.00%

RC9 5.12% 75.07% 20.00%

RC8 2.56% 87.59% 30.00%

RC7 1.28% 93.84% 40.00%

RC6 0.64% 96.97% 50.00%

RC5 0.32% 98.53% 60.00%

RC4 0.16% 99.32% 70.00%

RC3 0.08% 99.71% 80.00%

RC2 0.04% 99.90% 90.00%

RC1 0.02% 100.00% 100.00%

Even with perfect risk categorization on a PD basis, accuracy ratio is only 71.66%.

Default rate matters:  If the PDs for all buckets are 5 x larger, CAP curve remains 

the same, but the AR = 78.19%.
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Additional Observations for Large Pools

• Even if obligors are categorized on the basis of "noisy" PD estimates, 

all results hold provided expected PD for each bucket is monotonic

• Large pools of uncorrelated obligors diversify away "idiosyncratic" 

defaults perfectly making realized defaults always equal to expected 

defaults

• Buckets defined in terms of PD ranges – both overlapping and non 

overlapping will yield similar results

• PDs range can be viewed equivalent to a noisy PD 

• Small "noise" component can be made to correspond to distinct PD ranges 

• Large "noise" component can be made to correspond to overlapping PD 

ranges
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Finite Sample Size: Impact of Smaller Pools

• Size of the pool has most impact on AR 

values.

• Similar results hold for smaller pools as 

large pools with regard to PD 

distribution within buckets, both non-

overlapping and overlapping.
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Finite Sample Size: Impact of PD levels

• Study impact on AR of reducing absolute PD levels (and PD differences) across 

buckets

– Base case:  Safest bucket 2 Bps PD; each subsequent bucket PD 2x preceding one

– Other cases: Safest bucket 2 Bps; subsequent buckets 2.5x, 1.5x, 1.25x, 1.1x

• Absolute levels of PD determine the level of heterogeneity in the pool

– Small PDs cause larger variability in number of realized defaults, including frequent 

instances of low or no defaults 

– Small PD differences across buckets imply more homogenous pools, making default 

rates similar across buckets 

– Both factors impact AR negatively, even though the categorization is "perfect" in PD 

terms
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Performance Measures:  Correlated Obligors
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Correlation

Fact: - Correlation does not affect a pool‟s expected defaults, …

- … but correlation introduces more variability in realized defaults

Recall: AR being a non-linear function of defaults, i.e., ED(AR) ≠ AR(ED), any 

change in shape of the default distribution introduced by correlation 

can be expected to impact AR

Correlation modeled in the context of a Systemic Risk factor model

– For a pool of N obligors, most generic model would be to specify a joint 

distribution of [u1, u2, …, uN], ui ~ U[0,1] through a copula function and 

define obligor i as a default if ui < PDi

– Factor model representation allows for systemic/idiosyncratic separation

Note: Z may be dependent on several independent factors.  We assume 

a single factor model for the following analysis.

1i i i iZ     
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Correlation (continued)

• Key feature of model: Conditional independence i.e., conditioned on 

systemic latent factors:

• Unconditional PDs for correlated obligors become conditional PDs for 

independent obligors

• A given period‟s observation corresponds to a specific systemic latent factor 

realization and can be viewed as a description of a given state of the 

economy 

• Unconditional results can be viewed as an average (over systemic 

factors) of conditional, independent results
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Correlation (continued)

Base Case Example: Z ~ N(0,1), i ~ N(0,1)

Unconditional PDs

Conditional PDs: 

 = 20%  = 80%

1( )
( )
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i

i

PD Z
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Correlation: Large Pool
• AR can be calculated using semi-analytic methods

– Given Z, determine conditional PDs. 

 PDs determine exact default rates for each bucket

 AR|Z  can be calculated analytically

– Integrate AR|Z over Z to obtain unconditional ARs for different values of .

– Main result: Increasing correlation improves AR for large pools, except for 

maximum correlation of 100%

 Large pool eliminates variance around conditional default rates

 Increasing correlation introduces more heterogeneity in conditional PDs for negative 

shocks



32.

Correlation: Finite pools – 1000 observations per Bucket

Simulation method: Estimate mean AR over 100,000 trials

– Conditioned on Z, finite pool buckets have a default rate distribution 

instead of a point mass for large pools, bringing into play the effect of the 

non-linear relationship between AR and default rates, ED(AR) ≠ AR(ED)

– Main observation: Correlation improves mean AR for heterogeneous (in 

PD) portfolios but is detrimental to homogenous portfolios 
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Recap

• Typical performance measures such as AR/CAP or ROC may not be very 

informative in measuring performance of credit rankings based on 

relative risk (probability or likelihood of default)

– Perfect (PD-based) ranking models do not have perfect ARs.

– ARs may vary over time simply due to variations in population default rates

• Typical measures are more meaningful when used for comparing different 

categorization models over the same data set  

• Correlated changes in credit risk - resulting in very few or large numbers 

of obligor defaults - make Typical measures very volatile and difficult to 

interpret. 
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Price and Credit Risk
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Price and Credit Risk

• A security‟s price depends on a complex interaction of several risk factors:

– Credit Risk (default, transition, recovery, correlation, exposure size)

– Interest Rate Risk

– Liquidity

– Demand and Supply Conditions

– Other factors such as reinvestment / prepayment risks, etc. depending on the type of security 

(MBS for example). 

• Rarely is it possible to fully ascertain the contribution of each risk driver to a 

security‟s price – even for simple securities

• Arbitrage pricing models make certain assumptions related to price –

Example: CDS spreads reflect default risk 

– E [ PV of spread payments ] (fixed leg)  = E [ PV of losses ] (floating leg)

– Expected payment values depend on probability of default

– Pricing Theory:  Cashflow discounting done using risk-free rate while probabilities of default and 

expected recoveries are computed under the „Risk Neutral‟ measure

– Any impact of factors such as liquidity, demand/supply imbalances, systemic risk and market 

price of risk, etc. that impact CDS spreads get embedded in the implied risk neutral default 

intensities (measure of credit risk)
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Price and Credit Risk

• Model interpretations of default risk, perhaps adequate representations of 

reality in normal times, may break down in stressed environments.

– CDS spreads for very stable firms impacted in similar ways to more risky firms at the 

peak of the crisis

– Across the board re-pricing of all types of structured securities, regardless of the 

type of assets backing these securities. 

 Senior CLO tranches being quoted at spreads wider than the average spread of the 

underlying loan portfolio.
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Price and Credit Risk

• Bond markets showed similar patterns
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Case Study: Senior CLO Tranche Prices During Credit Crisis

• Some notes:

– Structured securities trades typically executed over the counter that make prices 

opaque (i.e. absence of a marketplace that could enable price discovery). 

– Inherently complex: Not only require predicting the likely evolution of the underlying 

collateral in the future but also accurately modeling the structure waterfall itself.

– More prone to „model risk‟

• Analyze the possible range of default rates, discount premia, market 

Sharpe ratio, etc. implied by quoted prices of senior CLO (AAA) tranches 

– Several CLO structures were analyzed with senior tranches quoted about 70¢.

– Horizon of 10 years.

– Results are presented here for a specific structure with the lowest break-even 

default cushion

– Collateral of CLOs is typically a mix of „BB‟ and „B‟ rated loans
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Case Study: Senior CLO Tranche Prices During Credit Crisis

I. Implied Constant Annual Default Rates (CADR):

• Assume a range of CADR scenarios from 0% to 25% in increments of 1% and 4 

levels of Recovery Rates (RR), (50%, 40%, 30% and 20%)

• Historical average realized recoveries on typical loan portfolios have been in excess of 

60% (makes even the most benign 50% recovery case a stressed scenario from a 

historical perspective)

• For each pair of CADR-RR combination, estimate the cashflows to the senior 

tranche in the form of interest and principal payments (incorporating all specifics of 

the transactions such as principal payments due to OC triggers, etc.)

• Value series of tranche cash flows for each CADR-RR pair using a range of 

Discounting Spreads (DS).
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Case Study: Senior CLO Tranche Prices During Credit Crisis

• Combination of CADR-RR-DS that produce a discounted cash 

flow value of 70¢
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Case Study: Senior CLO Tranche Prices During Credit Crisis

II. Defaults occurring early in the life of a transaction have more severe 

impact – Front Loaded defaults

– During stressed times expectations in the market are usually of a spike in 

defaults rates followed by a gradual recovery from the crisis. 

• Consider speculative grade default rates from the 1930s (historical 

peak) and sort defaults in descending order to create our base FL 

default case. 

– Historically (from what is available from public records), the highest default rate 

recorded over a 10 yr period in the US was decade of the 1930s.

• Generate tranche cash flows conditional on the FL default scenario 

and value using a range of discounting spreads. 

• Result: 

– Even if the worst 10 year period in US economic history repeated itself, senior 

CLO tranches (investigated) did not suffer any loss of promised principal or 

interest payments. 

– Stressing recoveries further, senior tranches did not take hits except for 20% 

recovery case where it suffered loss of a few cents
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Case Study: Senior CLO Tranche Prices During Credit Crisis

• Stress default rates from the Depression era by a factor of 25% and 50%

– Even under these extreme scenarios, only under the 30% and 20% recovery cases did senior 

tranches suffer small losses 

• Similar results when FL scenario created from 10 highest historical annual 

speculative grade default years (sorted in descending order and corresponding 

to the years 1933, 1932, 2001, 1991, etc.) 
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Price Implied Market Sharpe Ratio

• Estimate a market Sharpe ratio (market price of risk)  in the context of 

the Merton (1974) structural model.

– Structural model provides a framework for pricing securities through a 

transformation between physical probabilities of default (PD) and their risk neutral 

counterparts

• Approach: Start with assumption that market expectation is a repeat of 

the Great Depression era default rates. 

• Uncertainty around this expectation modeled in the form of „residual‟ 

correlation among the underlying loans in the CLO asset pool (pool is 

assumed to be 200 homogenous names).

• Numerically solve for L in equation above for values of  given base 

assumption that Pt corresponds to the 10 year „Great Depression‟ 

speculative grade default rate witnessed during the 1930‟s. 

– L estimation done subject to the constraint that risk neutral default distribution of 

collateral portfolio prices the representative senior CLO tranche to about 70¢.  

 1( )Q

t tP P t    L
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Price Implied Market Sharpe Ratio

• Market Sharpe ratio corresponding to various correlation assumptions 

(5%-20%) estimated in the range of 1.3 to 2.6. 

– Historically, L from corporate bond prices estimated in a range of 0.25 to 0.5 

[Bohn(2000)]

– Estimates of ex-post Sharpe ratios from equity markets computed around 0.3 

[French et al (1987), Fama and French (1989)]

• Market prices of risk/Sharpe ratios could diverge across different asset 

classes with capital markets known to be less than perfectly efficient -

however, extent of deviation for CLO tranche price based measure 

points to a level of risk aversion not supported by „fundamentals‟.

• Currently senior CLO tranches trade in the low 90s.

Prices reveal useful information related to credit risk; 

market inefficiencies/sentiment however cloud the 

picture of actual credit risk.
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CDS Spread-based Models for Predicting Credit Transitions
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CDS Market Derived Signals

• Modeling Objective

– Use CDS spreads to determine a market view of credit quality and 

evaluate relative to a fundamental credit analysis benchmark (S&P 

Credit Ratings)

• Model:  Use CDS data to determine a statistical relationship between 

CDS spreads and S&P rating levels

– Adjust  for CW/OL, Industry (GICS classification), Region, and 

Document Type

• Model Output:

– Representative CDS spreads for each rating level (credit curve)

– The market-implied credit ranking for a firm given its CDS spread and 

the value of the other covariates (CW/OL etc)
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CDS Market Derived Signals : Model

• Ordinary Least Squares regression to determine the coefficients that 

best explain the relationship between observed log-spreads and rating, 

firm and contract details.

– Log(Spread) = Piecewise linear function of S&P rating (on a numeric scale)

+ Adjustment for CW/OL status

+ Adjustment for GICS classification

+ Adjustment for Document Type

+ Error term

• Model made more robust through use of Bayesian prior on the model 

parameters

– Ensure there is always a solution, even when data is missing for some ratings, GICS, CW/OLs 

or DOCs

– Create an appropriate balance between continuity to past data and fidelity to current data

 If today‟s data are few, then rely to some degree on previous day‟s results

 Let historical relationship between parameters have some influence on how today‟s parameters relate to 

each other

• Compute CDS implied rank for a firm by solving for numerical rank that 

gives actual spread in above model with zero error.
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CDS Market Derived Signals : Discrepancy

• Discrepancy is difference between the computed rank and the actual 

S&P rating (Computed Rank – S&P Rating).  

• Some of the questions we try to investigate:

– Does a large positive discrepancy suggest that the market is anticipating 

an S&P downgrade or rating action?

 Similarly, does a large negative discrepancy suggest that the that the market 

is anticipating an upgrade?

– Are day-to-day discrepancies as informative as persistent 

discrepancies?

– How may large discrepancies be interpreted?

 Does the CDS market have a substantially different perspective on the firm‟s 

credit risk?

 Is the CDS market responding to non-credit aspects regarding the firm 

(liquidity, price volatility, and non-credit arbitrage/relative value 

opportunities)?
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• Discrepancy on a given day vs. subsequent change in rating within 6 

months

– Discrepancies appear to convey more information on adverse credit changes 

than credit improvements 

– Larger the discrepancy, greater the proportion of downgraded names

CDS Market Derived Signals : Results



50.

• Issues with the approach

– Daily discrepancies are volatile

 Large discrepancies on a given day very often decline in magnitude before 

the actual rating action. 

 Number of instances where discrepancies are large is small i.e. fraction of 

downgraded/upgraded names based on small number of events

• Look at persistent discrepancies to address volatility issues

– Compute a moving average of discrepancy to smooth the deviations

– Define certain criteria for persistence

 Average/Min/Max of (MA of) discrepancy exceeds some threshold for a 

chosen period length (Signal Persistence Period) before the credit change

– If persistent discrepancy preceded a credit change, consider MDS 

information as relevant

CDS Market Derived Signals : Results
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CDS Market Derived Signals : Results

• We see instances in the data where CDS MDS seems to provide 

informative signals of credit changes
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CDS Market Derived Signals : Results

• But we see (more) instances of false positives i.e. discrepancies 

reducing over time and CDS MDS converging to S&P rating
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CDS Market Derived Signals : Results

• Also, S&P rating changes are very frequently accompanied by 

announcements related to Outlook/Credit Watch

– CDS market expects subsequent rating actions in the future and prices 

this expectation 

– Future changes in credit driven primarily by CW/OL status 

• Controlling for CW/OL, less than 10% of persistent 

discrepancies (of 4 notches or more) precede credit changes for 

sub-investment grade names.

– Corresponding number for investment grade names is about 6%

• Overall, instances of signals unrelated to credit quality changes 

are very high
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CDS Market Derived Signals : Results

• Accuracy Ratio for MDS as predictor of credit changes

– Rank order names on the basis of discrepancy and compute AR from 

the proportion of names that actually had a credit change

 Maximizing AR by „optimizing‟ Average Discrepancy Computation, Signal 

Persistence, and Rating Evaluation Periods.

 For downgrades, the optimal signal had an AR = 45%.

 For upgrades, AR = 30%

 ARs for high yield downgrades (50%) and investment grade upgrades (40%) 

are higher

 ARs may be biased upwards as signals that lead to opposite credit changes 

are not penalized

• The caveats discussed earlier about Accuracy Ratio as a 

measure of credit model performance apply here also.
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