INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

Rules and Commitment in Communication

Guillaume Fréchette Alessandro Lizzeri Jacopo Perego

NYU

Montreal October 2017

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
INTRODUC	ΓΙΟΝ			

We revisit a classic question in economics from a new perspective:

- How "much" information can be shared under direct communication among interested parties?
- How does this depend on rules and protocols governing communication?

This is important for thinking about:

Lobbying, Austen-Smith (1993), Battaglini (2002); Relation between committees and legislature, Gilligan-Krehbiel (1987-1989); Production of evidence to a jury, Kamenica-Gentzkow (2011), Alonso-Camara (2016), ...

INTRODUCTION	Theory	Design	Results	CONCLUSIONS
_				

INTRODUCTION

What we do:

- A framework nesting existing models under the same umbrella.
- With this framework, we test comparative statics across these models.

We produce comparative statics along two principal dimensions:

- 1. **Rules**: What can the sender say?
- 2. Commitment: Can sender establish communication protocols?

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS

INTRODUCTION

Focus on a minimal set-up:

- Binary state: Red and Blue.
- Two parties (sender, receiver) with conflicting interests.
- Sender has information, Receiver has ability to act.
- Three messages: red, blue and no message.

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
RULES				

Rules: What can the sender say?

We explore two extremes:

- Unverifiable messages.
 - ► There are no rules governing which messages the sender can send.
- Verifiable messages.
 - When state **Red**: Sender can send **red** or **no message**.
 - When state **Blue**: Sender can send **blue** or **no message**.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS
Commitmen	ΙT			
Stage 1: Commi	tment.	Stage 2	2: Revision.	

- **Sender** selects her *commitment strategy*.
- This strategy will be revealed to the receiver.
- Sender *learns* color of the ball.
- She can revise her previous choice.
- Revision is *not revealed* to the receiver.

```
With probability 1 - \rho
```

Stage 3: Guess.

With probability ρ

- Receiver makes decisions as a function of message.
- The message comes from Commitment Stage with probability ρ .

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS
~	~			

SPECIAL CASES

• Cheap Talk.

Crawford and Sobel (1982)

- Unverifiable and no commitment.
- ► Disclosure. Grossman (1981), Milgrom (1981), Okuno-Fujiwara et al (1990)
 - ► Verifiable and no commitment.
- ► Bayesian Persuasion.

Kamenica and Gentzkow (2011)

• Unverifiable and full commitment.

Variations around a common basic structure, different predictions.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS
This Paper				

Exploit this framework to:

- Provide novel comparative statics: beyond preference alignment.
- Interaction of *Rules* and *Commitment* on strategic information transmission.
- Offer a broader perspective on these communication models.
- Test Bayesian persuasion.

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
This Paper				

Exploit this framework to:

- Provide novel comparative statics: beyond preference alignment.
- Interaction of *Rules* and *Commitment* on strategic information transmission.
- Offer a broader perspective on these communication models.
- Test Bayesian persuasion.

Our questions:

- 1. Are senders able to exploit commitment?
- 2. Do receivers understand information generated by commitment?
- 3. Do rules generate more responsiveness?

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS
Findings				

- Subjects understand power of commitment: senders figure out how to exploit it and receivers how to react to it.
- ► Subjects understand the effect of **rules**: senders more informative and receivers more receptive with verifiable information.
- Commitment consistent with Bayesian persuasion. If receiver is more demanding, sender delivers more information.
- Overall informativeness decreases (increases) with commitment under (un)verifiable information.
- Quantitative departures from theory, too much information conveyed in verifiable treatments, too little under unverifiable treatments.

RELATED LITERATURE

- Cheap talk experiments: Dickhaut, McCabe, and Mukherji (1995); Blume, De Jong, Kim, and Sprinkle (1998); Cai and Wang (2006); Sanchez-Pages and Vorsatz (2007); Wang, Spezio, Camerer (2010)
- Disclosure experiments: Forsythe, Isaac, and Palfrey (1989); King and Wallin (1991); Dickhaut, Ledyard, Mukherji, and Sapra (2003); Forsythe, Lundholm, and Rietz (1999); Benndorf, Kübler, and Normann (2015); Hagenbach and Perez-Richet (2015); Jin, Luca, and Martin (2016)
- ► Disclosure field: Mathios (2000); Jin and Leslie (2003); Dranove and Jin (2010)

INTRODUCTION	THEORY	DESIGN	RESULTS	CONCLUSIONS
~				
GAME				

- Binary state $\Theta = \{\theta_L, \theta_H\}$. Common prior μ_0 on θ_H .
 - Receiver actions $A = \{a_L, a_H\}.$
 - Set of messages $M = \{\theta_L, \theta_H, n\}$.
 - Set $M^{\theta} \subseteq M$: messages that Sender can use in state θ .
 - Information is *unverifiable* if $M^{\theta} = M$ for all θ .
 - Information is *verifiable* if $M^{\theta} = \{\theta, n\}$ for all θ .

INTRODUCTION	THEORY	DESIGN	RESULTS	CONCLUSIONS
~				

Game

- Sender's utility: $v(a) := \mathbf{1}(a = a_H)$.
 - Wins if Receivers chooses a_H .

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

GAME

- Sender's utility: $v(a) := \mathbf{1}(a = a_H)$.
 - Wins if Receivers chooses a_H .
- Receiver's preferences:

•
$$u(a_L, \theta_L) = u(a_H, \theta_H) = 0.$$

- $u(a_L, \theta_H) = -(1-q), u(a_H, \theta_L) = -q.$
- ► Choose action a_H if µ (θ_H) ≥ q. We call q the persuasion threshold.

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
GAME				

Stage 1:

• Sender chooses a **commitment** strategy: $\pi_C : \Theta \to \Delta(M^{\theta})$.

Stage 2: With probability $1 - \rho$, she enters an **revision stage**:

- Learns the realization of θ .
- Chooses a revision strategy: $\pi_R(\theta) \in \Delta(M^{\theta})$ conditional on θ .

Stage 3:

• Receiver guesses. $a: M \times \Pi_c \to A$

Parameter ρ captures the extent of commitment.

INTRODUCTION	Theor	Y Di	ESIGN	RESULTS	CONCLUSIONS

THEORY RESULTS/PREDICTIONS

Proposition.

- There is a $\hat{\rho}$ such that, if $\rho > \hat{\rho}$:
 - 1. some information is communicated in U,
 - 2. less than full information is communicated in *V*.
- ► Consider ρ such that ρ̂ < ρ < 1. Commitment has opposite effects on the amount of information transmission in V versus U:</p>
 - 1. under *U*, less information is transmitted in revision stage than in commitment stage;
 - 2. under *V*, more information is transmitted in revision stage than in commitment stage.

INTRODUCTION	Theory	Design	Results	CONCLUSIONS
_				

THEORY RESULTS/PREDICTIONS

Proposition.

- When messages are *verifiable*, commitment decreases informativeness.
- When messages are *unverifiable*, commitment **increases** informativeness.
- For $\rho = 1$, equilibrium outcome is "rule-independent."

INTRODUCTION	THEORY	Design	RESULTS	CONCLUSIONS
SPECIAL C	CASES			

How "much" information can be transferred in equilibrium?

- 1. Cheap Talk.
 - No information transmitted: *Babbling*.
- 2. Disclosure.
 - All information transmitted: *Unraveling*.
- 3. Bayesian Persuasion.
 - ► Some information is transmitted: *Lie, but maintain incentives*.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

THEORY RESULTS/PREDICTIONS

Proposition.

For any $\rho > 0$, for both cases of verifiable and unverifiable messages, as the persuasion threshold q increases, the strategy of the Sender becomes more informative.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

EXPERIMENT

Setup:

- Urn has three balls: two blue and one red.
- Receiver wins \$2 if guesses correctly.
- Sender wins \$2 if Receiver says Red.
- Up to three messages: **red**, **blue**, **no message**.
- Rules:
 - Verifiable: truth or no message.
 - Unverifiable: no constraints.

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS

DESIGN

INTRODUCTION		Theory	DESIGN	RESULTS	CONCLUSIONS
DESIGN	1				
Lab 1 Match 1 of 2			You are the Sender		
			Communication Stage		
		Here you After you click Confirm, w	choose your COMMUNICATION e will communicate the plan you	PLAN. I chose to the Receiver.	
	If the	ball is RED:		If the ball is BLUE:	
	Send Message	with probability:		Send Message with probability:	
	Red	52 %		Red 17 %	
	Blue	24 %		Blue 28 %	
	No Message	24 %		No Message 55 %	
	ò źś	60 7'S 100		25 00 75 100 CONFIRM	

INTRODUCTION	Theory	DESIGN		RESULTS	CONCLUSIONS
DESIGN					
Lab 1 Match 1 of 2		You are the Sender			
		Update Stage			
	Here ' The Receiver car	you can Update your COMMUN nnot see how you UPDATE you	IICATION PLAN. COMMUNICATION PL	AN.	
The Ball is	s Red.		Send Message	with probability:	
			Red	37 %	
•	•		Blue	40 %	
The message that you will send will	be generated:		No Message	23 %	
 With Probability 80%, from the chose at the previous stage. 	COMMUNICATION PLAN you				
With Probability 20%, from the I	JPDATE you choose now.		0 25	50 ¹ 75 ¹ 100	
				CONFIRM	

INTRODUCTION	Theory	DESIGN	Result	S CONCLUSION	IS
DESIGN					
Lab 2 Match 1 of 2		You are the Receiver			
		Guessing Stage			
The message you will receive will c	ome:		Choose your GUESS	SING PLAN:	
 with probability 20%, from the l with probability 80%, from the l see below: 	JPDATE, that you can't see. COMMUNICATION PLAN you	If I Receiv	/e Message	my guess will be:	
COMMUNICAT	ON PLAN:		The Ball is Red	RED BLUE	
100					
75			The Ball is Blue	RED BLUE	
20					
25			No Message	RED BLUE	
0 If the Ball is Red (Probability 33%)	If the Ball is Blue (Probability 66%)				
Send No Message 📃 Send Blue	Message 📕 Send Red Message				

INTRODUCTION	The	EORY	DES	IGN	Res	ULTS	CONCLUSIONS
DESIGN							
Lab 1 Match 1 of 2			You are the	Sender			
			📄 Sur	nmary:			
	Ball Color	Message Sent	Origin	Guess	Your Payoff	Opponent's Payoff	
	XXXX	200X 🔤	XX XX	© xxx	🚍 xx Dollars	🚍 xx Dollars	
	You selected this COM!	MUNICATION PLAN:	the Receiver so	elected this GUESS	SING PLAN:	When you are done,	
	100 selling co d ff the Ball is Red	if the Ball is Bar	If I receive Messa If I receive Messa If I receive No Me	ige Red. I will guess ige Blue, I will guess assage, I will guess 's	hoor 'hoor' oor'	continue to procee	d.
	Send Rod Message	Grobability 6000					

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS

PREDICTION (REVISITED)

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
TREATMENT	`S			

Treatments (2x3):

Rules:Verifiable vs Unverifiable.Commitment: $\rho = \{20, 80, 100\}.$

Labeling	g: Co	ommitn	nent
Dulas	V20	V80	V100
Rules	U20	U80	U100

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS

TREATMENTS

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS

Equilibrium

Sender's equilibrium behavior in two extreme cases:

U100			V100							
		1	messages						messages	8
		r	b	n				r	b	п
Ball	R	100%	0	0		Ball	R	0	0	100%
Dan	В	50%	50%	0			В	0	50%	50%

Intuition and main tensions:

- U100. Lie as much as you can, but preserve incentives.
- V100. Never release good news: "No news, good news."

INTRODUCTION	Theory	DESIGN	Results	CONCLUSIONS

EQUILIBRIUM BEHAVIOR

	Sender						Receiver			
	Commitment					Revision			Guessing	
Treat.	Ball		Mes	sage	Ball		Messag	ge	Mes.	Guess
		red	blue	no		red	blue	no		
V20	R B	1	x	$\begin{array}{c} 0 \\ 1 - x \end{array}$	R B	1	x	$\frac{0}{1-x}$	red blue no	red blue blue
V80	R B	0	$\frac{3}{4}$	$\frac{1}{\frac{1}{4}}$	R B	1	0	0 1	red blue no	red blue red
V100	R B	0	$\frac{1}{2}$	$\frac{1}{\frac{1}{2}}$					red blue no	red blue red
U20	R B	x x	y y	$\begin{array}{c}1-x-y\\1-x-y\end{array}$	R B	1 1	0 0	0 0	red blue no	blue blue blue
U80	R B	$\frac{1}{\frac{3}{8}}$	$\begin{array}{c} 0\\ \frac{5}{8} \end{array}$	0 0	R B	1 1	0 0	0 0	red blue no	red blue blue
U100	R B	$\frac{1}{\frac{1}{2}}$	0 $\frac{1}{2}$	0 0					red blue no	red blue blue

EXPERIMENTAL DETAILS

Implementation:

- Two unpaid practice rounds.
- 25 periods played for money in fixed roles.
- Random rematching between periods.

General Information:

- Six treatments, four sessions per treatment.
- 384 subjects (\approx 16 per session; between 12 and 24).
- Average earnings: \$24 (including \$10 show up fee).
- Average duration: 100 minutes.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

RESULTS

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

INFORMATIVENESS: CORRELATION

How to measure equilibrium informativeness?

► Pearson correlation index φ between Ball and Guess. (Definition ▷)

Intuition:

- If no information, $\phi = 0$. Receiver always says blue.
- If full information, $\phi = 1$. Receiver perfectly matches the state.

We focus attention on data from last 15 rounds.

TO FOCUS ON SENDERS

Assume Bayesian receiver:

- 1. Receives message m.
- 2. Computes **posterior** belief $\mu(R|m) \in [0, 1]$.
- 3. Guesses Red if and only if $\mu(R|m) \ge \frac{1}{2}$.

Sender: Commitment vs. Revision, $\rho = 0.8$

 $\rho = 0.2$ vs. $\rho = 1$

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
DO SUBJECTS	REACT TO]	RULES?		

The Case of $\rho = 0.2$

• Senders send more information in V20 than U20:

• $\phi^B = 0.89 \text{ vs } 0.00.$

- Receivers' probability of guessing red is higher in V20 than U20:
 - ▶ 97% vs 37%.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS
TREATMEN	лт U100H			

New payoffs:

- Receiver wins if correctly guesses the color of the ball:
 - ► 2 if ball is Blue.
 - $\frac{2}{3}$ if ball is Red.
- Sender wins 3 if Receiver guesses Red.

Bayesian Receiver guesses Red iff $\mu(R) \ge 0.75$.

Solution is to provide more information:

π_1^{\star}	:		Messag	e
-		r	b	n
Ball	R	1	0	0
Dan	В	1/6	5/6	0

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS
CDF of ϕ^B	FOR TREAT	MENTS U1	00 and U100)H

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

CORRELATIONS BY TREATMENT

		Theory	y:					Data	a:			
		Comr	nitment (ρ)					Co	mmit	ment (p)	
	20%	80%	100%	100% H.		20%		80%		100%		100% H.
Verifiable	1	0.57	0.50		Verifiable	0.80	\approx	0.78	>	0.67		
						V		V		V		
Unverifiable	0	0.50	0.50	0.79	Unverifiable	0.09	<	0.21	\approx	0.21	\approx	0.20

Data + Bayesian Rec:

	Commitment (ρ)						
	20%		80%		100%		100% H.
Verifiable	0.89	≈	0.85	>	0.78		
	V		V		V		
Unverifiable	0.00	<	0.33	\approx	0.34	≈	0.45

INTRODUCTION THEORY DESIGN RESULTS CONCLUSIONS

CDF OF ϕ^B : $\rho = 0.2$ VS $\rho = 1$

INTRODUCTION THEORY DESIGN **RESULTS** CONCLUSIONS

CDF of ϕ^{B} : $\rho 0.2, 0.8$, and 1.

	INS
INFORMATIVENESS' CORRELATION	

Verifiable:

Commitment decreases correlation, although much less than it should.

Unverifiable:

Commitment increases correlation, although much less than it should.

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
INFORMATI	VENESS: C	ORRELATIO	N	

Verifiable:

Commitment decreases correlation, although much less than it should.

Unverifiable:

Commitment increases correlation, although much less than it should.

This measure takes into account at the same time:

- 1. Senders' behavior.
- 2. Receivers' behavior.

Cumulates mistakes from all sides.

➡ Who is getting it wrong and why?

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
	ION WITH P	AVESIAN D	ECEIVEDS	

Point predictions on informativeness increase in all treatments.

Observation 1.

Informativeness reacts to commitment in a manner consistent with the theory. When receivers are Bayesian, predictions close to theory for unverifiable case, mixed for unverifiable case.

Most interesting deviation:

- Even with rational receivers: $U100 \ll V100$

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
_	_	_		
INFORMATI	VENECC. D	ANDOM DO	CTEDIODC	
	VENESS. N			

What posteriors do senders attempt to induce?

Chain of events: $\theta \Rightarrow m \Rightarrow \mu(R|r)$

Goal:

• Extracting informativeness from induced posteriors.

We use:

• Variation in conditional **posterior** beliefs.

A richer measure than correlation.

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
.	5	5		

INFORMATIVENESS: RANDOM POSTERIORS

Posteriors on the ball being RED. The color of the line indicates the state. Vertical lines indicate the equilibrium predictions.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

INFORMATIVENESS: RANDOM POSTERIORS

		Commitment (ρ)							
	2	0%	8	0%	10	0%			
Verifiable	0.86	(1.00)	0.78	(0.40)	0.69	(0.25)			
	B 0.05	R 0.91	B 0.07	R 0.85	B 0.10	R 0.80			
Unverifiable	0.11	(0.00)	0.23	(0.25)	0.30	(0.25)			
	B 0.30	R 0.40	B 0.26	R 0.49	B 0.23	R 0.53			

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS						
LIFE CALLER THE CALL AND CALL AND CALLER THE CALL										

This confirms that senders react to commitment and, to some extent, know how to exploit it.

Also, this shows under a different light that:

Observation 2.

Point prediction of V100 is further off than U100.

INTRODUCTION THEORY DESIGN **Results** CONCLUSIONS

SENDERS' HETEROGENEITY

Size of circle proportional to number of observations.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

FULL COMMITMENT (THEORY)

Let's review equilibrium behavior in U100 and V100.

U100

V100

messages					messages				
		r	b	n			r	b	n
States	R B	100% 50%	0 50%	0 0	States	R B	0 0	0 50%	100% 50%

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

FULL COMMITMENT (DATA)

What is going on in V100?

► Full commitment, no lies.

Let's see the aggregate data in U100 and V100.

U100				V100					
messages						1	messages		
		r	b	n			r	b	n
States	R B	74% 44%	12% 39%	14% 17%	States	R B	51% 0	0 58%	49% 42%

INTRODUCTION THEORY DESIGN **Results** Conclusions

FULL COMMITMENT (DATA)

Unpacking Senders's heterogeneity in V100:

We compute the most representative strategies for Senders in V100.

			messages		
4067 614			r	b	n
49% of data points	Ctata a	R	16%	0	84%
	States	В	0	72%	28%
			r	nessages	
			r	b	n
33% of data points	States	R	95%	0	5%
	States	В	0	20%	80%
			n	nessages	
100 61 4			r	b	n
18% of data points	Statas	R	96%	0	4%
	States	В	0	95%	5%

To understand who is mostly responsible for these documented deviations, we estimate a QRE model with heterogeneous λ 's.

We use the empirical method in Bajari and Hortacsu (2005). (link)

Challenges: dynamic game with a continuum of actions.

Denoting $EU_i(a_i)$ the expected utility of action a_i for player *i*:

$$\mathbb{P}(a_i) = rac{e^{\lambda_i E U_i(a_i)}}{\sum_{a_i' \in A_i} e^{\lambda_i E U_i(a_i')}}$$

- When $\lambda_i = \infty$, the player is perfectly rational.
- \square When $\lambda_i = 0$, the player is perfectly naive.

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
O	Deenewar I			

QUANTAL RESPONSE EQUILIBRIUM

Our results: (Preliminary)

Treatment V100: $\lambda_S = 0.17$ and $\lambda_R = 1.73$.

Treatment U100: $\lambda_S = 0.99$ and $\lambda_R = 1.28$

The comparison among treatments is legitimate because:

(*a*) Binary actions.

(b) Same "transformed" strategy spaces.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

FOCUS ON RECEIVERS

How to establish rationality of a receiver?

A weak requirement of rationality:

- The likelihood of guessing red is increasing $\mu(R|m)$.
- Conditional on posterior, message should not matter.

INTRODUCTION	Theory	Design	RESULTS

FOCUS ON RECEIVERS

Bars indicate the number of messages inducing this posteriors on the ball being RED (left axis). The red line indicates the probability that such a message yields a red guess (right axis).

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS
PRECISION OF	RECEIVERS	' Responsi	e to Poster	RIORS

- ► The choices of a majority of subjects in each treatment is consistent with a threshold strategy at least 90% of the time.
- ► A large fraction of subjects in every treatment have a precision of at least 80%:

	Commitment (ρ)				
	20% 80% 100%				
Verifiable	0.80	0.96	0.96		
Unverifiable	0.92	0.85	0.75		

INTRODUCTION THEORY DESIGN **Results** Conclusions

RECEIVERS' THRESHOLDS

Values are jittered slightly to make multiple overlapping thresholds distinguishable.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

RECEIVERS' THRESHOLDS

Baysian Responder Threshold are the thresholds that would be estimated if the responders were Baysian given the posteriors in the data. Black for subjects harder to convince than a Bayesian, gray for subjects easier to convince than a Baysian. Values are jittered slightly to make multiple overlapping thresholds distinguishable.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS

REACTION TO IRRELEVANT INFORMATION

Unverifiable Treatments

	Commitment (ρ)		
	20%	80%	100%
Posterior	0.49**	0.45***	0.55***
Blue Message	-0.11**	-0.18***	-0.15**
No Message	-0.03	-0.16***	-0.05

Marginal effects on receiver's guess of red.

FOCUS ON RECEIVERS (SUMMARY)

Overall, receivers respond to communication protocol.

Observation 4.

- ► Most Receivers use threshold strategy most of the time
- Posterior beliefs not sufficient statistic, actions not sensitive enough to posteriors.
- Significant fraction indistinguishable from Bayesian
- ► Significant fraction too skeptical in high commitment treatments.
- Skepticism reduced by rules (Pareto improvement)

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS

CONCLUSIONS

INTRODUCTION	Theory	DESIGN	RESULTS	CONCLUSIONS
Conclusio	ONS			

We study the role of *rules* and *commitment* on informativeness.

- Present a simple framework nesting known models as special cases.
- We perform comparative statics **across** models.
- Look at communication models from a different perspective.

INTRODUCTION	Theory	Design	RESULTS	CONCLUSIONS
Conclusi	ONS			
RESULTS				

- Many ways in which behavior responds to rules and commitment in line with (complex) theory.
- In aggregate data: in V receivers are close to optimal, not so in U.
- Senders' behavior heterogeneous.
- Some senders more likely to play close to equilibrium in V, but some senders also more likely to be "noisy" in V. Partly explains why, as ρ increases, informativeness decreases in V.

Appendix

APPENDIX

QUANTAL RESPONSE EQUILIBRIUM

As in Bajari and Hortacsu (2005), we estimate H-QRE using a two-step procedure:

- For every binned Sender's strategy π̃_C ∈ Π, we estimate the expected utility EU_S(π_C)-an equilibrium object-with ÊU_S(π_C), its empirical mean.
- 2. Then we use $\hat{EU}_S(\pi_C)$ to compute the Likelihood function as a function of the parameters λ_S and λ_R .

This procedure eliminates the need to compute the equilibrium, as in McKelvey and Palfrey (1995).

This greatly reduces the computational complexity of estimating the model. (back)

INFORMATIVENESS: CORRELATION

Pearson Correlation index btw Ball and Guess. $\phi := \frac{n_{Rr}n_{Bb} - n_{Rb}n_{Br}}{\sqrt{n_R n_B n_r n_b}}.$

	a = r	a = b	$\theta = R$
$\theta = R$	n _{Rr}	n _{Rb}	n_R
$\theta = B$	n _{Br}	n_{Bb}	n _B
	n_r	n_b	

where

$$n_{ heta,a} = \sum_{m \in M} \hat{\pi}(m|\theta)\sigma(a|m)$$

and

$$\hat{\pi}(m|\theta) := \rho \pi_C(m|\theta) + (1-\rho)\pi_U(m|\theta)$$

 \triangleleft

BEHAVIOR UNDER VERIFIABLE MESSAGES

BEHAVIOR UNDER VERIFIABLE MESSAGES

BEHAVIOR UNDER UNVERIFIABLE MESSAGES

BEHAVIOR UNDER UNERIFIABLE MESSAGES

Probability of Guessing Red
RECEIVERS' THRESHOLDS

Values are jittered slightly to make multiple overlapping thresholds distinguishable.

SENDERS' PAYOFFS

Data + Bayesian Receivers

	Commitment (<i>ρ</i>)							
	20% 0.29		80% 0.28		100% 0.35		100% High	
Verifiable								
	Theory 0.33	Simulated 0.33	Theory 0.60	Simulated 0.30	Theory 0.67	Simulated 0.30		
Unverifiable	0.00		0.25		0.17		0.29	
	Theory 0.00	Simulated 0.27	Theory 0.67	Simulated 0.32	Theory 0.67	Simulated 0.26	Theory 0.44	Simulated 0.19

Table : Expected Payoffs (Normalized for maximal win)

SENDERS' HETEROGENEITY IN PAYOFFS

Data + Bayesian Receivers

Size of circle proportional to number of observations