Strategic Sample Selection

Alfredo Di Tillio¹ Marco Ottaviani² Peter N. Sørensen³

October 28, 2017

¹Bocconi ²Bocconi ³Copenhagen

Impact of Sample Selection on Quality of Inference?

- Typically observational data are non-randomly selected:
 - Either self selection induced by choices made by subjects
 - Or selection from sample inclusion decisions made by analysts
- Experimental data can also suffer from selection problems challenging *internal validity*: subversion of randomization to treatment/control
 - Inadequate allocation concealment increases treatment effects by as much as 41%, according to Schulz et al. (1995)
 - Berger (2005) documents researchers' ability to subvert assignment of patients depending on expected outcomes toward end of block
- When treatment is given to healthiest rather than random patient:
 - Favorable outcomes are weaker evidence that treatment is effective
 - But how is accuracy of evaluator's inference affected?

Impact of Selection on Inference?

- When feeding a **consumer review** to potential buyers with limited attention:
 - Should an e-commerce platform post a random review or allow merchant to cherry-pick one?
- Similarly, **peremptory challenge** gives a defendant the right to strike down a number of jurors:
 - Given that the defendant selects the most favorable jurors, how is quality of final judgement affected?
- When **testing** a student in an **exam**:
 - Should teacher pick a question at random or allow student to select most preferred question out of a batch?

Outline

1. Statistical model: Simple hypothesis testing under MLRP

- 2. Global impact of selection on evaluator
 - · Lehmann's dispersion for comparison of location experiments
 - Analysis of F^k , distribution of max of k iid variables, as k varies
- 3. Local impact of selection on evaluator
 - Local version of Lehmann's dispersion
 - Local effects of varying k
 - Extreme selection $k
 ightarrow \infty$ and link to extreme value theory
- 4. Strategic selection
 - Equilibrium persuasion
 - Impact on researcher's payoff from selection
 - Impact of uncertain and unanticipated selection

Setup

- Evaluator interested in the true value of unknown state $\theta \in \{\theta_L, \theta_H\}$
 - Here, $\theta_H > \theta_L$, and prior $p = \Pr(\theta_H)$
- Data: Evaluator observes a signal $x = \theta + \epsilon$
- Noise ϵ independent from θ , with known c.d.f. F (experiment)
 - Assume logconcave density f
- Manipulation will shift the distribution of ε
- Specifically: F is shifted to F^k where k > 1
 - First-order stochastic higher ε and x
- As if ε is **selected**: best of k independent draws
- We will focus on a rational evaluator, aware of selection
 - For this evaluation, can proceed for now with some known F

Information and Optimal Decision

- Evaluator's reservation utility R
- Decision payoff for Evaluator:

	state θ_L	state θ_H
reject	R	R
accept	θ_L	θ_H

- Case of interest: $\theta_L < R < \theta_H$
- Evaluator accepts iff $\Pr(\theta_H|x)\theta_H + (1 \Pr(\theta_H|x))\theta_L \ge R$
- Optimal strategy is a cutoff rule: accept iff

$$\underbrace{\ell_{\mathcal{F}}(x) := \frac{f(x - \theta_{H})}{f(x - \theta_{L})}}_{\text{Likelihood Ratio}} \geq \underbrace{\overline{\ell} := \frac{1 - p}{p} \frac{R - \theta_{L}}{\theta_{H} - R}}_{\text{Acceptance Hurdle}}$$

• Log-concavity of *f* ⇒ Monotone Likelihood Ratio Property

• $\ell_F(x)$ is increasing \Rightarrow Optimal to accept iff $x \ge \bar{x}_F^*(\bar{\ell})$

False Positives v. False Negatives

- For every $-\infty \leq \bar{x}_F^*(\bar{\ell}) \leq \infty$, $\alpha = 1 F(\bar{x} \theta_L)$ and $\beta = F(\bar{x} \theta_H)$
- Higher cutoff $\bar{x}_F^*(\bar{\ell})$ results in
 - decrease in type I errors (false positives) α
 - increase in type II errors (false negatives) β

Information Constraint (a.k.a. ROC curve, qq plot)

• Define the Information Constraint of Experiment F as

$$\beta = \beta_F(\alpha) = F(F^{-1}(1-\alpha) + \theta_L - \theta_H),$$

decreasing and convex (by logconcavity/MLRP)

Problem Reformulation

- Reformulate evaluator problem in terms of α and β
- Disregarding constants, evaluator maximizes

$$\underbrace{-(1-p)(R-\theta_L)}_{\text{MC False Pos.}} \alpha \underbrace{-p(\theta_H-R)}_{\text{MC False Pos.}} \beta$$

subject to the InfoC

$$\beta_F(\alpha) = F(F^{-1}(1-\alpha) + \theta_L - \theta_H)$$

• Substituting InfoC & $\bar{\ell} = \frac{1-p}{p} \frac{R-\theta_L}{\theta_H-R}$ into objective function, problem is

$$\min_{\alpha} \bar{\ell} \alpha + \beta_F(\alpha)$$

Random v. Selected Experiment

- Compare two regimes:
 - Random data point, experiment F
 - Selected data point, experiment F^k
 - density $kF^{k-1}f$ still logconcave by Prekopa's theorem
- Threshold becomes

$$\ell_{F^k}(x) = \left[rac{F(x- heta_H)}{F(x- heta_L)}
ight]^{k-1} \ell_F(x) \geq \overline{\ell}.$$

- Is evaluator better off with F or with $G = F^k$?
- More generally, let's compare F and G

Outline

- 1. Statistical model: Simple hypothesis testing under MLRP
- 2. Global impact of selection on evaluator
 - Lehmann's dispersion for comparison of location experiments
 - Analysis of F^k as k varies
- 3. Local impact of selection on evaluator
 - Local version of Lehmann's dispersion
 - Local effects of varying k
 - Extreme selection $k
 ightarrow \infty$ and link to extreme value theory
- 4. Strategic selection
 - Equilibrium persuasion
 - Impact on researcher's payoff from selection
 - Impact of uncertain and unanticipated selection

Comparison of Experiments

• G is preferred to F iff

$$\bar{\ell}\alpha_{\mathsf{G}}^*(\bar{\ell}) + \beta_{\mathsf{G}}(\alpha_{\mathsf{G}}^*(\bar{\ell})) \leq \bar{\ell}\alpha_{\mathsf{F}}^*(\bar{\ell}) + \beta_{\mathsf{F}}(\alpha_{\mathsf{F}}^*(\bar{\ell})),$$

• So, G is globally $(\forall R, q, \theta_H > \theta_L)$ preferred to F iff $\beta_G(\alpha) \leq \beta_F(\alpha) \forall \alpha$

- Example: $F = \mathcal{N}(0, 1)$ and $G = F^k$
- Laxer constraint: better power 1-lpha for any significance 1-eta

Comparison of Experiments

• Lehmann (1988) orders experiments without computing InfoC:

G is *globally* preferred to $F \Leftrightarrow G$ is *less dispersed* than *F*

• <u>Definition</u> G less dispersed than $F: G^{-1} - F^{-1}$ is decreasing, i.e.

$$G^{-1}(v) - F^{-1}(v) \le G^{-1}(u) - F^{-1}(u)$$
 for all $0 < u < v < 1$.

• Intuition: Constraint $F^{-1}(1-\alpha) - F^{-1}(\beta) = \theta_H - \theta_L$ relaxed with G

Global Comparison Based on Dispersion

Double Logconvexity Theorem

 F^k is less (more) dispersed the greater is $k \ge 1$

 \Leftrightarrow $-\log(-\log F) \text{ is convex (concave)}$

Corollary

The evaluator prefers $F^{k'}$ to F^{k} (resp. F^{k} to $F^{k'}$) for all $k' \ge k \ge 1$ and all parameter values (θ_L , θ_H , p, and R) if and only if $-\log(-\log F)$ is convex (resp. concave)

Double Logconvexity Theorem: Intuition

• Rewrite the condition of G less dispersed than F as:

$$fig({\mathcal F}^{-1}(u)ig) \leq gig({\mathcal G}^{-1}(u)ig) \qquad ext{for all } 0 < u < 1.$$

G at quantile $G^{-1}(u)$ is steeper than F at quantile $F^{-1}(u)$, $\forall u$

- Transform F and F^k by strictly increasing $u \mapsto -\log(-\log u)$
- Transformed functions are parallel shifts of each other:
 -log(-log F^k) = -log(-log F) log k

Special cases

- Gumbel's Extreme Value Distribution $F(\varepsilon) = \exp(-\exp(-\varepsilon))$
 - F is such that $-\log(-\log F)$ is linear—both convex and concave
 - For every k the experiment F^k is neither less nor more dispersed than F and the evaluator is therefore indifferent to selection
- Logistic distribution: $F(\varepsilon) = \frac{1}{1+e^{-\varepsilon}}$
 - Double logconvex, so selection benefits evaluator
- Exponential distribution: $F(\varepsilon) = 1 e^{-\varepsilon}$, for $\varepsilon \ge 0$
 - Double logconcave, so selection harms evaluator

Analysis of Double Logconvexity

• $-\log(-\log F)$ is convex function if and only if

- The reverse hazard rate decreases less fast than the cumulative reverse hazard rate increases
- Equivalently, F has a quantile density function less elastic than Gumbel's

$$\frac{\frac{f'(\varepsilon)}{f(\varepsilon)}}{\frac{f(\varepsilon)}{F(\varepsilon)}} < -\frac{1 + \log F\left(\varepsilon\right)}{\log F\left(\varepsilon\right)} \qquad \text{for all } \varepsilon$$

Empirical Diagnostic Test

- We derive a practical diagnostic test in actual experimental studies
 - where it may be unknown whether selection occurred
- Selection-invariance property of double logconvexity/logconcavity:
 - $-\log(-\log F)$ and $-\log(-\log F^k)$ differ only by a constant \Longrightarrow

F double log-concave \iff *F*^{*k*} double log-concave

- Double log-concave data distributions should "raise a flag"
 - if selection does occur, analyst is bound to having less informative data
- If data is double logconvex instead
 - selection actually results in a more informative experiment, if analyst properly adjusts for selection

Outline

- 1. Statistical model: Simple hypothesis testing under MLRP
- 2. Global impact of selection on evaluator
 - Lehmann's dispersion for comparison of location experiments
 - Analysis of F^k as k varies
- 3. Local impact of selection on evaluator
 - Local version of Lehmann's dispersion
 - Local effects of varying k
 - Extreme selection $k \to \infty$ and link to extreme value theory
- 4. Strategic selection
 - Equilibrium persuasion
 - Impact on researcher's payoff from selection
 - Impact of uncertain and unanticipated selection

Local Dispersion

• First rewrite the condition of *G* less dispersed than *F* as:

 $F(F^{-1}(u) + \delta) \leq G(G^{-1}(u) + \delta)$ for all $\delta > 0$ and 0 < u < 1.

• <u>Definition</u> (Local Dispersion) Experiment G is *locally less* δ -dispersed than experiment F on $[u_1, u_2] \subseteq [0, 1]$ if

$${\sf F}({\sf F}^{-1}(u)+\delta)\leq {\sf G}({\sf G}^{-1}(u)+\delta)$$
 for all $u_1\leq u\leq u_2$

Local Dispersion Theorem

- Equivalence between:
 - G less dispersed than F for a specific δ and for all u in some interval
 - G preferred to F in a corresponding interval
- Local Dispersion Theorem: Let $\delta = \theta_H \theta_L$. For all $N \ge 1$, the following conditions are equivalent:
 - (L) There exist $0 = \ell_1 \leq \cdots \leq \ell_{2N+1} = \infty$: for all $n = 1, \dots, N$, the evaluator prefers F to G for $\overline{\ell} \in [\ell_{2n-1}, \ell_{2n}]$ and G to F for $\overline{\ell} \in [\ell_{2n}, \ell_{2n+1}]$.
 - (A) There exist $1 = \alpha_1 \ge \cdots \ge \alpha_{2N+1} = 0$: $\forall n = 1, \dots, N$, $\beta_F(\alpha) \le \beta_G(\alpha)$ for all $\alpha \in [\alpha_{2n}, \alpha_{2n-1}]$ and $\beta_F(\alpha) \ge \beta_G(\alpha)$ for all $\alpha \in [\alpha_{2n+1}, \alpha_{2n}]$.
 - (D) $\exists 0 = u_1 \leq \cdots \leq u_{2N+1} = 1$: $\forall n = 1, \dots, N$, F is locally less δ -dispersed than G on $[u_{2n-1}, u_{2n}]$ and more δ -dispersed than G on $[u_{2n}, u_{2n+1}]$.

Local Dispersion: Idea

- Fix $\delta = \theta_H \theta_L > 0$
- Consider any given β
- Under F, we obtain α_F on the information constraint curve,

$$\delta = F^{-1}(1 - \alpha_F) - F^{-1}(\beta)$$

• G does better with this β

$$\mathsf{G}^{-1}(1-\alpha_{\mathsf{F}})-\mathsf{G}^{-1}(\beta)<\delta=\mathsf{F}^{-1}(1-\alpha_{\mathsf{F}})-\mathsf{F}^{-1}(\beta)$$

i.e.,

$$G(G^{-1}(\beta) + \delta) < F(F^{-1}(\beta) + \delta)$$

• In particular, if G^{-1} is flatter than F^{-1} at β , this is true when δ is small

Info Constraint Crossing Really Matters

Bayesian vs. Frequentist Evaluator

- Frequentist Evaluator fixes $\tilde{\alpha}$ and prefers the experiment with higher $\beta(\tilde{\alpha})$
- Bayesian Evaluator reoptimizes $\tilde{\alpha}$ for every experiment

• Bayesian and Frequentist Evaluator agree iff $\beta_{G}(\alpha) \leq \beta_{F}(\alpha) \ \forall \alpha$

Locally Variable Impact of Selection

- Back to comparison of F and F^k
- Focus on F^k first more & then less locally dispersed than F
- Proposition: Let F be an experiment such that $-\log(-\log(F))$ is first concave (resp. convex) and then convex (resp. concave). Then for every $k \ge 1$ there exists ℓ_k such that the evaluator prefers F to F^k (resp. F^k to F) for $\overline{\ell} \le \ell_k$ and F^k to F (resp. F to F^k) for $\overline{\ell} \ge \ell_k$
- If F is first double log-concave and then double log-convex
 - quantile difference $(F^k)^{-1}(u) F^{-1}(u)$ is first increasing and then decreasing in u
- Selection hurts evaluator less concerned about type I errors: low $\bar{\ell}$
 - benefits for high acceptance hurdle $\bar{\ell}$

Uniform Example

- Uniform distribution, $F(\varepsilon) = \epsilon$ for $\epsilon \in [0, 1]$
- Double-log transformation of F is $-\log(-\log(\varepsilon))$
- Concave for $\varepsilon \leq 1/e$ & convex for $\varepsilon \geq 1/e$
- Bell-shaped quantile difference

• Evaluator is hurt by selection when concerned about type II errors (low $\overline{\ell}$)

• benefits from selection when more concerned about type I errors (high $ar{\ell})$

Laplace Example

Laplace distribution

$$F(\varepsilon) = \begin{cases} \frac{e^{\varepsilon}}{2} & \text{for } \varepsilon < 0\\ 1 - \frac{e^{-\varepsilon}}{2} & \text{for } \varepsilon \ge 0 \end{cases}$$

- Double-log transformation of F is convex for $\varepsilon < 0$ and concave for $\varepsilon > 0$
- U-shaped quantile difference

• Evaluator benefits from selection for low $ar{\ell}$ but is hurt for high $ar{\ell}$

Extreme Selection

- What happens when presample size $k \to \infty$?
- Suppose that, for some nondegenerate distribution \$\vec{F}\$ and for some location and scale normalization sequences \$b_k\$ and \$a_k > 0\$

$$F^{k}\left(b_{k}+a_{k}\varepsilon\right)
ightarrowar{F}\left(\varepsilon
ight)$$

for every continuity point ε of \bar{F}

- By the Fundamental Theorem of Extreme Value Theory
 - \overline{F} is Gumbel, Extreme Weibull or Frechet
 - For logconcave F, either Gumbel or Extreme Weibull

Extreme Selection: Results

- Distribution of noise term is systematically shifted upwards as k increases
- Location normalization sequence b_k is growing
 - but evaluator can adjust for any translation without impact on payoff
- Limit impact of selection thus hinges on
 - whether the scale normalization sequence a_k shrinks to zero or not
- 1. If $a_k \rightarrow 0$, noise distribution is less and less dispersed as k grows
 - evaluator gets arbitrarily precise information about the state
- 2. If instead we can choose a constant sequence a_k
 - extreme selection based on experiment F amounts to a random experiment based on \overline{F}

Extreme Selection - Exponential Power Family

• Proposition: Let F be an **exponential power distribution**

$$f(arepsilon) = rac{s}{\Gamma(1/s)} e^{-|arepsilon|^s}$$

of shape s > 1. As $k \to \infty$, the limiting distribution has Gumbel shape, and there is arbitrarily precise information about the state

- But the limit result is very different when s = 1, Laplace
- Laplace (like exponential) converges to Gumbel with $a_k = 1$ for each k

Outline

- 1. Statistical model: Simple hypothesis testing under MLRP
- 2. Global impact of selection on evaluator
 - Lehmann's dispersion for comparison of location experiments
 - Analysis of F^k as k varies
- 3. Local impact of selection on evaluator
 - Local version of Lehmann's dispersion
 - Local effects of varying k
 - Extreme selection $k
 ightarrow \infty$ and link to extreme value theory
- 4. Strategic selection
 - Equilibrium persuasion
 - Impact on researcher's payoff from selection
 - Impact of uncertain and unanticipated selection

Strategic Selection

- So far we assumed that the researcher is willing to show a selected experiment to the evaluator
- We now verify this posited behavior is an equilibrium in natural game
- Assume researcher is fully biased toward acceptance i.e. bears no losses due to type I errors

Selective Sampling Game - Setting

• Timeline

- 1. Researcher privately observes $\varepsilon_1, \ldots, \varepsilon_k$
- 2. Researcher chooses $i \in \{1, \ldots, k\}$
- 3. Evaluator observes $x_i = \theta + \varepsilon_i$
- 4. Evaluator chooses whether to accept or reject

Payoffs

- Evaluator: Same as before
- Researcher:
 - 0 if the evaluator rejects
 - 1 if the evaluator accepts

Selective Sampling Game - Equilibrium

 Proposition: There exists a Bayes Nash equilibrium where the researcher chooses maximal selection, *i* ∈ arg max_{1≤j≤k} ε_j, and the evaluator accepts for signals x satisfying

$$\frac{F^{k-1}(x-\theta_H)f(x-\theta_H)}{F^{k-1}(x-\theta_L)f(x-\theta_L)} \ge \bar{\ell}$$

 The researcher's strategy is a best response because the evaluator will observe a higher signal and will be more likely to accept

Equilibrium Impact of Selection on Researcher's Welfare

- Impact of selection on researcher's welfare
 - depends on direction of change in pair (α, β) chosen by evaluator
- For any pair (α, β) , the researcher's payoff is

$$p(1-\beta)+(1-p)\alpha.$$

• Thus, a generic indifference curve of the researcher is a line of the form

$$\beta = \left(1 - \frac{u}{p}\right) + \frac{1 - p}{p}\alpha,$$

where $0 \le u \le 1$ is researcher's payoff

 Researcher benefits from selection ⇔ Evaluator reacts to selection (experiment F^k) by choosing a new pair (α', β') below and to right of indifference line going through optimal pair in experiment F

Equilibrium Impact of Selection on Researcher's Welfare

- Intuitively:
 - If R is high, informative selection increases the acceptance chance
 - but info-reducing selection reduces acceptance
 - Conversely, when R is low
- To illustrate consider normal noise, with $\beta_{F^k}(\alpha) \geq \beta_F(\alpha)$

Impact of Selection on Researcher's Welfare: Examples

• Gumbel example-pure rat race

- Selection is welfare neutral for evaluator & researcher
- Laplace example:
 - Evaluator is worse off with F^k than with F for large values of R
 - Researcher is hurt by selection for small or large values of *R*, but benefits for intermediate values
 - Credibility Crisis at high *R* both parties lose from selection
- Uniform example:
 - Evaluator is better off with F^k than with F for large values of R
 - Researcher benefits for small or large values of *R*, but hurt for intermediate values

Data Production

- At t = 0 researcher privately sets presample size k
 - at increasing & convex cost C(k)
- Evaluator correctly anticipates k optimally chosen by the researcher:
 - best responds with acceptance at \bar{x}
- Researcher correctly anticipates acceptance threshold \bar{x} and

$$\max_{k} p\left(1 - F^{k}\left(\bar{x} - \theta_{H}\right)\right) + (1 - p)\left(1 - F^{k}\left(\bar{x} - \theta_{L}\right)\right) - C\left(k\right),$$

concave problem

Equilibrium with Data Production

• Proposition: Equilibrium is characterized as the solution (\bar{x}, k) to

$$\frac{F^{k-1}(\bar{x}-\theta_H)f(\bar{x}-\theta_H)}{F^{k-1}(\bar{x}-\theta_L)f(\bar{x}-\theta_L)} = \bar{\ell}$$

and

$$\begin{aligned} -p\log\left(F\left(\bar{x}-\theta_{H}\right)\right)F^{k}\left(\bar{x}-\theta_{H}\right)-(1-p)\log\left(F\left(\bar{x}-\theta_{L}\right)\right)F^{k}\left(\bar{x}-\theta_{L}\right)\\ &=C'\left(k\right)\end{aligned}$$

Rat race effect:

- Evaluator correctly anticipates degree k of selection
- \Rightarrow manipulation cost C(k) largely wasted
- Gumbel example:
 - Apart from C(k), payoffs independent of k
 - Researcher would gain from making k observable

Evaluator's Value of Commitment

- Slope of researcher's best response $k(\bar{x})$ depends on parameters:
 - When prior strongly favors rejection, $F(\bar{x} \theta_L)$ is sufficiently small
 - best response k is an increasing function of \bar{x}
 - When the prior strongly favors acceptance
 - best response k is a decreasing function of \bar{x}
- Under double logconvexity, evaluator wants to induce greater k
 - **Commit** to a weaker standard for high *R*
- Conversely, when evaluator loses from greater k

Uncertainty of Manipulation: Negative Impact

- Under uncertain selection, evaluator does not know whether researcher manipulates the number k is random
 - In location experiment, difficult to adjust estimate correctly
 - Logconcavity could fail, so monotonicity could fail: some experimental results may be "too good to be true"
- Consider the Gumbel case
 - If the evaluator knew realized k, since F^k is as effective as F, the randomness made no difference
 - Not knowing k is then Blackwell worse
- More general force: Uncertainty in selection harms evaluator

- Evaluator's payoff gain at k = 2 over benchmark, Normal example
 - Red curve has equal chance of k = 1, 2

Impact on Unwary Evaluator

- We have assumed that the evaluator correctly anticipates k
- If not, the threshold s* does not adjust to k
 - No doubt that the researcher gains from raising k (gross)
- The impact on the evaluator turns out to be ambiguous
 - Wrong threshold: bad
 - More informative experiment: good
- Under symmetry and equipoise, indifference to k = 1, 2
 - Equipoise: $\bar{\ell} = 1$. Symmetry, $F(1 \varepsilon) = 1 F(\varepsilon)$

Literature

- Selection bias: Heckman (1979)
 - · Methods to estimate and test, correcting for bias
- **Subversion of randomization**: Blackwell and Hodges (1957) *assume* Evaluator loses from manipulation
 - Characterize optimal randomization mechanism to be unpredictable
- Disclosure: Grossman (1980), Milgrom (1981), ..., Henry (2009)
- Information provision & persuasion: Johnson and Myatt (2005) & Kamenica and Gentzkow (2011)
 - The researcher freely chooses an experiment
- Selective disclosure: Fishman and Hagerty (1990), Glazer and Rubinstein (2004), Hoffmann, Inderst & Ottaviani (2014)
 - Here, systematic study of selection, based on statistical properties
- Signal jamming: Holmström (1999)
- Selective trials: Chassang, Padró and Snowberg (2012)

Summary

- We develop tractable model of challenges to internal validity:
 - 1. Dispersion of $G = F^k$ decreases in $k \Leftrightarrow -\log(-\log F(\varepsilon))$ is convex
 - Then, selection has global and monotonic impact on evaluator
 - 2. To provide general characterization of impact of selection, we compare **any** two experiments *F*, *G* based on **local dispersion**, for a **subset** of parameters
 - We compare experiments when $G^{-1}(p) F^{-1}(p)$ is not monotonic
- Evaluator benefits from known sample selection unless
 - Data has sufficiently thin tails & prior strongly favors acceptance
 - Data has sufficiently thick tails & prior strongly favors rejection
- Uncertain manipulation tends to harm evaluator

Open Questions

- In companion paper we developed toy (all-binary) model of sample selection challenging *external validity*
 - Alcott (2015) documents hard-to-control-for site selection: study sample **not representative** of population of interest
 - Initial trials are implemented in high impact sites, then impact declines,
 ⇒ no reliable inference of ATE even after sample of 8 million Americans!

LITERATURE on Stochastic Orders of Order Statistics

- No existing results for strictly logconcave distributions
- Khaledi and Kochar's (2000) Thm 2.1: if X_i's are i.i.d. according to F with Decreasing Hazard Rate (DHR), X_{i:n} is less dispersed than X_{j:m} whenever i ≤ j and n − i ≥ m − j. Thus, for i = n = 1 and j = m = k: If F has DHR, F^k is more dispersed than F
- By Prekopa's Thm: Logconcavity => IHR
- Thus exponential (loglinear, with constant HR) is the only logconcave distribution to which Khaledi and Kochar applies
- Converse of Khaledi and Kochar'sThm 2.1 not valid for IHR distribution
- Our characterization applies to logconcave distributions

Testing for Double Logconvexity: Approach

- Suppose researcher obtains data $(x_1,...,x_N)$ and estimates $\hat{ heta}$
- Residuals $\varepsilon_n = x_n \hat{\theta}$ are independent draws from F^k
- Under assumption of homogeneous treatment effect, test can be performed on ε_n or (x₁,...,x_N)
 - Use Kolmogorov-Smirnov 2-sample test to evaluate homogeneity in treatment effect, comparing treatment and control distribution
- Double logconvexity of F is equivalent to concavity of log($-\log F$)

• IDEA: test for logconcavity of $-\log F$

• Similarly, to test double logconcavity of $F \Leftrightarrow$ logconcavity of $\frac{1}{-\log F}$

Testing for Double Logconvexity/Logconcavity: Procedure

- We extend Hazelton's (2011) test for logconcavity
 - start from empirical CDF F of an outcome variable
 - compute the non-negative transformation $-\log F$
 - rescale it to integrate to one over the original support
- The test requires as input a sample generated by the density whose logconcavity we want to test, so we cannot just use original sample,but
 - we can treat this transformation as a PMF and
 - draw an independent random sample from it
- Run the test for logconcavity on the simulated sample:

 $\begin{cases} H_0 : \text{transformed density is logconcave } (=dlogcx) \\ H_1 : \text{transformed density is not logconcave} \end{cases}$

• Replacing $-\log F$ with $\frac{1}{-\log F}$ we have $H_0 = \text{dlogcv}$

Application to Andrabi, Das, and Khwaja (2017) AER

- Field experiment on
 - impact of providing test scores on educational markets
- · Considered outcome variable: scores in treated villages
 - K-S test for homogeneity in distributions returns p-value>0.3
 - Test for logconcavity of original sample: p-value>0.77
- Left: Distribution of original outcome variable
- Right: Computed empirical F (red) and $-\log(-\log F)$ (blue)

Application to Andrabi, Das, and Khwaja (2017), Cont.

- Rescaled log F to fit a PMF & sample of 1,000 iid obs from it (right panel)
- Rescaled $\frac{1}{-\log F}$ to fit a PMF & sample of 1,000 iid obs from it (left panel)
- Test p-value: 0.9 for H₀: transformed density log F is logconcave;
 - evidence in favor of F double logconvex
- Test p-value = 0 for H₀: transformed density $\frac{1}{-\log F}$ is logconcave

Application to Lyons (2017) AEJ Applied Econ

- Field experiment on
 - impact of teamwork on productivity
- · Outcome variable: productivity for groups allowed to work in teams
 - K-S test for homogeneity in distributions returns p-value>0.97
 - Test for logconcavity of original sample: p-value>0
- Left: Distribution of original outcome variable
- Right: Computed empirical F (red) and $-\log(-\log F)$ (blue)

Application to Lyons (2017) AEJ Applied Econ – cont.

- Rescaled log F to fit a PMF & sample of 1,000 iid obs from it (right panel)
- Rescaled $\frac{1}{-\log F}$ to fit a PMF & sample of 1,000 iid obs from it (left panel)
- Test p-value = 0.99 for H₀: transformed density $\frac{1}{-\log F}$ is logconcave
- Test p-value: 0 for H₀: transformed density log F is logconcave;
 - evidence in favor of F double logconcavity

