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Abstract

Real-Time Signal Extraction (RTSE) addresses a series of important prospective estima-

tion problems ranging from ‘simple’ forecasting up to the timely and/or accurate extraction

of components - trends or cycles -, towards the sample end of a time series. In practice, the

optimal design of RTSE filters is challenged by two major issues: one-sided filters are subject to

undesirable leakage (imperfect noise suppression) and they suffer from undesirable phase shifts

(timeliness). Revisions add an extra complexity layer by generating particular non-stationarities

along vintages. We here devise a unified framework to tackle RTSE and revisions based on the

Multivariate Direct Filter Approach (MDFA). Strengths of the resulting approach are threefold

when compared to the generic model-based paradigm: it simplifies calculations/computations by

integrating out redundant model structure; it emphasizes a fundamental ‘timeliness-reliability’

dilemma which generalizes the traditional mean-square paradigm; it offers a flexible and pow-

erful user-interface which allows to operationalize important research priorities. Our approach

is generic in the sense that it could accommodate for parametric as well as non-parametric

representation of the data.

Keywords. Real-time signal extraction, data revisions, Multivariate Direct Filter Approach

(MDFA), timeliness-reliability dilemma, customized optimization criteria, cointegration, revision

triangle.

Disclaimer : Preliminary/Draft.

1 Introduction

Real-time signal extraction (RTSE) concerns the determination and the estimation of important

components, such as the trend or the cycle, towards the sample end of a time series. The optimal

design of RTSE filters is challenged by two major issues in practice: one-sided filters are subject

1



to undesirable leakage (imperfect noise suppression) and they suffer from undesirable phase shifts

(time delays). Wildi (2005, 2008.1, 2011) proposes a novel approach, the so-called Direct Filter

Approach (DFA), which is based on a set of customized optimization criteria1. We here propose

to extend the scope of this approach by allowing for general revision processes in the multivariate

DFA (MDFA) as proposed in Wildi (2008.2).

Cunningham et al. (2009) state “Most macroeconomic data are uncertain - they are estimates

rather than perfect measures of underlying economic variables -. One symptom of that uncertainty

is the propensity of statistical agencies to revise their estimates in the light of new information

or methodological advances”. McKenzie (2006) notes eight reasons for revisions of official statis-

tics. Statistical properties of revisions are analyzed in Aruoba (2008) where it is shown that the

revision process contradicts simple rationality requirements, implying that future revisions can be

forecasted, to some extent. Anderson and Gascon (2009) complement this view by emphasizing the

determination of the ‘true’ value “Statistical agencies face a tradeoff between accuracy and timely

reporting of macroeconomic data. As a result, agencies release their best estimates of the ‘true’ un-

observed series in the proceeding month, quarter, or year with some measurement error. As agencies

collect more information, they revise their estimates, and the data are said to be more ‘mature’. As

the reported data mature, the estimates, on average, are assumed to converge toward the ‘true’ un-

observed values”. Croushore (2009) expands the previous particular perspectives by distinguishing

five general research areas entitled “Data Revisions”, “Structural Modeling”, “Forecasting”, “Mon-

etary and Fiscal Policy” as well as “Current (real-time) Analysis”2. The author argues “Optimal

forecasts and indicators require a model of the data revision process (see Croushore 2006 for a sur-

vey). Some authors cast the data revision process in state-space form, which then allows the use of

standard filtering techniques for forecasting, estimation, inference, smoothing, estimation of missing

data, etc”. Jacobs and van Norden (2011) distinguish three strands of the literature, namely “Data

Description”, “Optimal Forecasting and Inference” and “Cycle Trend Decompositions” and they

propose a general state-space model which “further integrates all three strands of this literature”.

We position our approach by noting its contribution to the “Cycle Trend Decompositions” theme,

evoked by the latter authors, as well as to the “Current Analysis” topic suggested by Croushore.

VAR, VECM and restricted VAR representations offer an alternative to the aforementioned

state-space models, see for example Pain (1994), Patterson and Heravi (1991, 2004) and Garratt

1The potential of the approach has been documented in a series of recent applications, see

for example http://www.idp.zhaw.ch/usri (real-time US-indicator) and http://www.neural-forecasting-

competition.com/NN3/results.htm as well as http://www.neural-forecasting-competition.com/NN5/results.htm

(forecasting).
2The author maintains and up-dates and comprehensive literature review on each of these themes, see

https://facultystaff.richmond.edu/∼dcrousho/docs/realtime lit.pdf.
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et al. (2008, 2009). Hecq and Jacobs (2009) propose a unifying framework which reconciles two

main streams: observation balanced systems and vintage balanced systems. When operating with

non-stationary time series, we take inspiration from the latter authors who consider cointegration

across releases (not vintages) of a non-stationary time series. More specifically, we propose a set of

filter constraints which are able to link ‘common trends’ across releases.

We here propose a novel generic approach which combines ‘revision’ filtering (determination of

the true data) and signal extraction filtering (determination of the signal) in a common Multivari-

ate Direct Filter Approach (MDFA): the proposed optimization criteria address filter parameters

- not model parameters - ‘directly’. Potential strengths of the resulting shift of perspective are

threefold: the particular arrangement of parameters in the reduced-form simplifies computations

by ‘integrating out’ redundant (model) structure; control on critical RTSE performances (timeli-

ness, noise suppression) can be exerted explicitly; finally, the method offers a natural and flexible

user-interface which redefines and revaluates the role of the user. The approach is generic in the

sense that we do not emphasize a particular model philosophy or data-representation or target

signal. The user could supply his preferred model-based representation (for example TRAMO,

X-12-ARIMA, STAMP, VECM, multivariate state space), he could specify his preferred signal

target (model-based or any of the classical filters: Hodrick-Prescott, Christiano Fitzgerald, Baxter-

King,...) and he could replicate corresponding real-time performances perfectly with or without

revisions involved; he could ‘customize’ any preferred design(s) by emphasizing timeliness and/or

reliability issues of early (real-time) trend or cycle estimates; alternatively, the user could supply a

non-parametric representation (a sufficient statistic) of the data and customize the resulting opti-

mization criterion to his individual research priorities. Although the approach remains completely

generic, we take the liberty to mark our personal preference - in notational terms - in the text.

The paper is organized as follows: section 2 discusses alternative data-arrangements which are

useful in ‘organizational’ terms; section 3 reviews the generic filter-background and refers to the

literature on the topic; section 4 combines vintage filtering and signal extraction filtering in a com-

mon framework and section 5 concludes by a short wrap-up.
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2 Data Organization

We first introduce simple notational conventions for working with vintages. The data can be

organized in the so-called revision triangle, as proposed in Jacobs and van Norden (2011)

x0
1 x1

1 ... xh1 ... xT−1
1

x0
2 ... xh−1

2 ... ...

... ... ... ...

x0
T−h ... xhT−h

... ...

x0
T


(1)

where columns are indexing release time - collect vintages - and rows are indexing run-time from

t = 1 to t = T : xlt designates historical data t released in t + l. The most recent vintage is

denoted by xjT−j , where j = 0, ..., T − 1. Final ‘true’ data is denoted by x∞t . Our notation slightly

departs from the custom notation xt+lt , found in the literature, because the time-dimension t does

not have a direct meaning in the frequency-domain - where our approach resides - whereas the

lag l, alone, will have. Moreover, our notation emphasizes the diagonals of the revision triangle

which are interesting because the resulting series are (supposed to be) congruent in statistical

terms - stationary or difference stationary -, see the appendix (section 6.1) for reference on this

topic. Publication lags can be accounted for by corresponding shifts of the subscripts, xlt−lag (for

notational ease we here ignore lags). We also frequently rely on the following alternative data

arrangement in our developments

x0
1 x1

1 ... ... xT−2
1 xT−1

1

x0
2 x1

2 ... ... xT−2
2

... ... ... ...

x0
T−h x1

T−h ... xhT−h

... ...

x0
T


(2)

where the h-th column corresponds to the h-th upper diagonal in 1 or, equivalently, to the time series

of historical h-th releases (accounting for the first h revisions). Obviously, the latter representation

is also a ‘revision triangle’. In order to distinguish 1 from 2 we call the former ‘vintage triangle’

and the latter ‘release triangle’ thereby emphasizing the importance of the respective columns. Our

preference for the latter data-organization is based on the aforementioned statistical congruency

argument.
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3 (M)DFA Background

When attempting to combine signal extraction and data-revisions, the literature suggests that state

space models have become something like a ‘golden standard’. A recent approach proposed by Ja-

cobs and van Norden (2011) is sketched in the appendix. Their sophisticated model allows to isolate

unobserved revision components (news, noise, spillovers) as well as unobserved time series compo-

nents (trend, cycle, noise). The sheer elegance of the model is very appealing and the compelling

idea of identifying ‘components’ with (structural) ‘dynamics’ of the latent state-vector suggests that

the analyst can rely on a powerful statistical tool in order to analyze ‘components’. In contrast, our

reduced-form approach shifts the research priority: we are not primarily interested in the “Data

Description” theme, as evoked in the introduction, but in RTSE instead3. The following method

tackles RTSE ‘directly’, it allows for sophisticated customization of the optimization criterion and

it offers a flexible user-interface for operationalizing important research priorities.

3.1 Direct Filter Approach (DFA)

We assume that the target series is the output of a possibly bi-infinite (and generally symmetric)

filter4 applied to ‘final’ data x∞t :

yT =
∞∑

j=−∞
γjx
∞
T−j (3)

Our task consists in estimating yT by relying on past and present vintages xht , t = 1, ..., T , h =

0, ..., T − 1. The index T of yT emphasizes the real-time aspect (concurrent filter): extensions to

‘smoothing’ - estimation of yT−1, yT−2, ... - are straightforward and are not discussed explicitly.

If data is not revised, then x0
t = x∞t and the expression for the (real-time) finite-sample estimate is

ŷT =

L∑
j=0

bjx
0
T−j (4)

where L ≤ T−1 denotes the length of the moving average (MA-)filter. Optimal parameter estimates

could be derived according to the mean-square norm

E[(yt − ŷt)2] =

∫ π

−π
|Γ(ω)− Γ̂(ω)|2dS(ω)→ min

b0,...,bL

3Obviously, a state space model of the data is able to tackle RTSE too and the corresponding real-time estimates

would be optimal, in a mean-square sense, conditionally on the model being ‘true’. But this crucial assumption can

be challenged by the sheer complexity of the model.
4We avoid intentionally to specify the bi-infinite filter in order to keep the approach generic. Note that classical

one-step forecasting could be replicated by setting γ−1 = 1, γj = 0, j 6= −1 (which defines a finite asymmetric target

filter).
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where Γ(ω) =
∑
|j|<∞ γj exp(−ijω) is the transfer function of the symmetric filter (target), Γ̂(ω) =∑L

j=0 bj exp(−ijω) is the transfer function of the one-sided (real-time) filter and S(ω) is the spectral

distribution of xt
5. In practice, the integral is approximated by a discrete (finite) sum6

2π

T

T/2∑
k=−T/2

|Γ(ωk)− Γ̂(ωk)|2d̂S(ωk)→ min
b0,...,bL

(5)

where ωk = k2π/T is the standard discrete frequency-grid and d̂S(ω) is an estimate of the (un-

known) spectral distribution function. Possible candidates are explicit model-based spectral densi-

ties (as obtained by standard packages such as TRAMO or X-12-ARIMA or STAMP, for example)

or implicit model-based densities (such as obtained from HP-, CF- or BK-filter designs, for example)

or non-parametric estimates such as the periodogram d̂S(ωk) :=
∣∣Ξ0
TX(ωk)

∣∣2, see Wildi (2008.1):

2π

T

T/2∑
k=−T/2

|Γ(ωk)Ξ
0
TX(ωk)− Γ̂(ωk)Ξ

0
TX(ωk)|2 (6)

=
2π

T

T/2∑
k=−T/2

|Γ(ωk)− Γ̂(ωk)|2
∣∣Ξ0
TX(ωk)

∣∣2 → min
b0,...,bL

(7)

where Ξ0
TX(ωk) denotes the discrete Fourier Transform of the data x0

t :

Ξ0
TX(ωk) =

1√
T2π

T∑
t=1

x0
t exp(−itωk)

Tackling revisions addresses a generalization of the frequency-domain expression

Γ̂(ωk)Ξ
0
TX(ωk) =

 L∑
j=0

bj exp(−ijωk)

Ξ0
TX(ωk) (8)

see section 4. In contrast to classical maximum likelihood approaches, criterion 5 emphasizes the

filter error - not a model residual - and it addresses filter parameters - not model parameters -. By

avoiding to specify the precise type of spectral estimate (model-based or not) we could keep the

approach generic and in a sense agnostic. However, we shall mark our personal long-term preference

for the DFT here.

Wildi (1998, 2005, 2008.1 and 2011) proposes a decomposition of the mean-square filter error 7

5The proposed frequency-domain representation remains valid as long as the filter error yt − ŷt is stationary -

even if xt happens to be integrated - see the appendix for reference. We can therefore substitute t to T in the above

criterion.
6For notational simplicity we here assume that T is an even number.
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based on a straightforward application of the law of the cosine in the complex plane:

2π

T

T/2∑
k=−T/2

|Γ(ωk)− Γ̂(ωk)|2
∣∣Ξ0
TX(ωk)

∣∣2
=

2π

T

T/2∑
k=−T/2

(A(ωk)− Â(ωk))
2
∣∣Ξ0
TX(ωk)

∣∣2 (9)

+
2π

T

T/2∑
k=−T/2

4A(ωk)Â(ωk) sin(Φ̂(ωk)/2)2
∣∣Ξ0
TX(ωk)

∣∣2 (10)

In this decomposition A(ωk) = Γ(ωk) is the real transfer function of the symmetric filter7. The first

summand 9 measures that part of the total (mean-square) filter error which is attributable to the

amplitude mismatch: it summarizes distortions in the passband and noise-rejection in the stopband

of the real-time filter. The second summand 10 measures the contribution by the non-vanishing

phase function: it is restricted to the passband since the dimensionless phase-term sin(Φ̂(ωk)/2)2

is scaled by the product of amplitude functions. We are now in a position to tackle a famous real-

time filter dilemma addressing timeliness and reliability (noise suppression) issues. Specifically, we

introduce additional ‘weights’ λ and W (ωk) in the above expressions:

2π

T

T/2∑
k=−T/2

(A(ωk)− Â(ωk))
2W (ωk)

∣∣Ξ0
TX(ωk)

∣∣2 (11)

+(1 + λ)
2π

T

T/2∑
k=−T/2

4A(ωk)Â(ωk) sin(Φ̂(ωk)/2)2W (ωk)
∣∣Ξ0
TX(ωk)

∣∣2 (12)

=
2π

T

T/2∑
k=−T/2

|Γ(ωk)− Γ̂(ωk)|2W (ωk)
∣∣Ξ0
TX(ωk)

∣∣2
+4λ

2π

T

T/2∑
k=−T/2

A(ωk)Â(ωk) sin(Φ̂(ωk)/2)2W (ωk)
∣∣Ξ0
TX(ωk)

∣∣2 → min (13)

For λ = 0 and W ≡ Id the mean-square criterion 7 is replicated; for λ > 0 phase-artifacts are

artificially magnified and timeliness of the optimal filter must improve (the delay decreases); noise

suppression or reliability can be improved if W (·) emphasizes the fit in the stop-band. Obviously,

timeliness and reliability issues can be addressed simultaneously: a customized real-time filter can

outperform traditional mean-square designs in both dimensions at costs of poorer mean-square

performances. This result confirms that the classical mean-square error norm is not a ‘panacea’:

in particular it is not congruent with the early detection of turning-points (of a trend or a cycle

signal). Illustrative examples/exercises and R-scripts addressing the proposed customization of 5

are maintained at disposition on SEFBlog, see the appendix for reference. A generalization to

7For notational ease we assumed Γ(·) ≥ 0 such that Γ(ωk) = |Γ(ωk)| =: A(ωk).
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non-stationary integrated processes is provided in Wildi (2008.1), chapter 6.

Let us briefly conclude this section by commenting the ‘interface’ linking the user to the statistical

algorithm: the user can supply the type of signal (in 3) and the type of spectral estimate (in 5)

and he can customize the optimization criterion 13 by supplying λ and W (·). The user can repli-

cate real-time performances of classical model-based approaches (TRAMO/SEATS, X-12-ARIMA

or STAMP, for example) or classical filter designs (as for example Hodrick-Prescott, Christiano-

Fitzerald or Baxter-King) by supplying corresponding (pseudo) spectral densities d̂S(ωk) and he

can customize either of these designs, according to his particular research priorities, by relying on

13. Alternatively, he can rely on the (pseudo-) DFT and possibly improve RTSE-performances

even further, see Wildi (2008.1) chapters 4,5, 7 and 8 for corresponding results.

3.2 Multivariate Direct Filter Approach (MDFA)

Wildi (2008.2) extends the above results to a multivariate framework, the so-called Multivariate

Direct Filter Approach (MDFA). We here briefly summarize the main results by considering the

stationary case (the case of integrated and/or cointegrated releases is discussed in section 4.3 as

well as in the appendix). Let yt be the target signal 3 and assume the existence of m additional

explaining variables wjt, j = 1, ...,m. We can consider the following generalization of 8:

Γ̂X(ωk)ΞTX(ωk) +

m∑
n=1

Γ̂Wn(ωk)ΞTWn(ωk) (14)

where

Γ̂X(ωk) =

L∑
j=0

bXj exp(−ijωk)

Γ̂Wn(ωk) =
L∑
j=0

bwnj exp(−ijωk)

are the (one-sided) transfer functions applying to the ‘explaining’ variables and ΞTX(ωk), ΞTWn(ωk)

are the corresponding DFT’s. Theorem 7.1 in Wildi (2008.2) establishes that the following (gener-

alized) optimization criterion

2π

T

T/2∑
k=−T/2

∣∣∣∣∣(Γ(ωk)− Γ̂X(ωk)
)

ΞTX(ωk)−
m∑
n=1

Γ̂Wn(ωk)ΞTWn(ωk)

∣∣∣∣∣
2

→ min
B

(15)

inherits all efficiency properties of the (univariate) DFA and therefore the whole customization

principle can be carried over to a general multivariate framework (the parameter matrix B is
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defined in 19 below). Specifically, we can re-write the above criterion as:

2π

T

T/2∑
k=−T/2

∣∣∣∣∣(Γ(ωk)− Γ̂X(ωk)
)

ΞTX(ωk)−
m∑
n=1

Γ̂Wn(ωk)ΞTWn(ωk)

∣∣∣∣∣
2

=
2π

T

T/2∑
k=−T/2

∣∣∣∣∣(Γ(ωk)− Γ̂X(ωk)
)
−

m∑
n=1

Γ̂Wn(ωk)
ΞTWn(ωk)

ΞTX(ωk)

∣∣∣∣∣
2

|ΞTX(ωk)|2

=
2π

T

T/2∑
k=−T/2

∣∣∣Γ(ωk)− Γ̃(ωk)
∣∣∣2 |ΞTX(ωk)|2 (16)

where

Γ̃(ωk) := Γ̂X(ωk) +
m∑
n=1

Γ̂Wn(ωk)
ΞTWn(ωk)

ΞTX(ωk)
(17)

Note that potential singularities affecting Γ̃(ωk) (due to a vanishing denominator DFT) will be

canceled in 168. A ‘customization’ of the (multivariate) mean-square error norm is straightforwardly

obtained in the multivariate case by applying the decomposition in the previous section to 16:

2π

T

T/2∑
k=−T/2

|Γ(ωk)− Γ̃(ωk)|2W (ωk) |ΞTX(ωk)|2

+4λ
2π

T

T/2∑
k=−T/2

A(ωk)Ã(ωk) sin(Φ̃(ωk)/2)2W (ωk) |ΞTX(ωk)|2 → min (18)

where amplitude and phase functions address expression 17.

If we postulate that the revision-sequence is of finite length h0, i.e. xh0−1
t = x∞t , see section

4, then the data-revision problem can be transposed straightforwardly into the above MDFA by

defining:

xt := xh0−1
t ; wnt := xnt ; ΞTX(ωk) := Ξh0−1

TX (ωk); ΞTWn(ωk) := ΞnTX(ωk), n = 0, ..., h0 − 2

bXj := bh0−1,j ; bwnj := bnj , n = 0, ..., h0 − 2

The n-th column of the release triangle 2, denoted by xn := (xn1 , ..., x
n
T−n, 0, ..., 0)′ is an ‘explaining’

variable and bnj are the filter weights applied to xnT−j . Accordingly, the structure of the release

8From a numerical perspective a better solution which avoids singularities is provided in Wildi (2011.2).
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triangle swaps over to the parameter space of filter coefficients:

b0,L−1 b1,L−1 ... bh0−1,L−1 0

... ... ...

b0,h0 b1,h0 ... bh0−1,h0 0

b0,h0−1 b1,h0−1 ... bh0−1,h0−1 0

... ... ...

b01 b11

b00


(19)

We call this particular arrangement ‘parameter release triangle’: it reflects ‘structure’ imposed by

the revision-background on the general multivariate filter framework. Recall that our preference

for the release triangle relies on a statistical congruency argument.

The data-revision problem and the RTSE problem can now be tackled in a unified framework.

In this multivariate context the user could replicate classical multivariate model-based approaches

(VEC-ARIMA, State-Space) by plugging corresponding (pseudo- and/or cross-) spectral distribu-

tion functions into 15 and he could customize these designs - enhancing timeliness and/or noise

suppression - by supplying λ and W (·) in 18. Alternatively, he could rely on the (pseudo-) DFT

- as we are assuming implicitly in our notation -. Additional interesting ‘structures’ imposed by

the revision process on the parameter space of the (real-time) filter are discussed in the following

section.

4 Combining RTSE and Data-Revisions

We here combine the revision filtering task and the RTSE-task in the proposed MDFA-framework.

For this purpose we briefly analyze the estimation of the ‘true’ data. The corresponding vintage

filter/smoother is then plugged into the RTSE-filter.

4.1 Vintage-Filtering/Smoothing

Estimation of the ‘true’ latent data x∞t can be obtained in the following general form

x̂∞T−j =

T−j−1∑
l=−j

j+l∑
h=0

γj+l−hj,j+l x
j+l−h
T−(j+l) (20)

The three-dimensional index-space spanned by j, l, h fixes the target variable x∞T−j and identifies

longitudinal and lateral contributions of the vintage triangle 1: for given j, the remaining indices

l and h allow for movement along columns and rows, respectively. In a model-based perspective

the above filter/smoother weights could be derived by imposing particular identifying (structural)
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constraints, see section 6.2 for reference. In contrast, we here propose to consider relevant ‘struc-

tures’ imposed on the filter/smoother-weights ‘directly’.

If the latest vintage xj+lT−(j+l) encompasses all earlier releases x0
T−(j+l), ..., x

j+l−1
T−(j+l) then γj+l−hj,j+l =

0 for 0 < h ≤ j + l and 20 simplifies to

x̂∞T−j =

T−j−1∑
l=−j

γj+lj,j+lx
j+l
T−(j+l) (21)

This setting is nearly - though not strictly - identical to the ‘pure news’ case analyzed in section

6.29. We feel free to label this derived ‘structure’ by the term ‘extended pure news’ case: it will

play an important role on the top RTSE-layer by imposing ‘structure’ upon the parameter triangle

19.

Practitioners often have an idea about the extent or the usefulness of information supported by

xj−hT−j , 0 < h ≤ j, beyond that conveyed by the latest release xjT−j , h = 0. Assuming a fair

amount of rationality of data providers would restrict h to typically ‘small’ values. We would

like to suggest that it may be easier for an experienced practitioner to impose constraints on the

vintage-filter/smoother weights ‘directly’ than to formulate a suitable structure for an underlying

model. As an example, the user could specify

γ0
j,j+l := αhγhj,j+l (22)

where 0 ≤ α ≤ 1 thus reflecting the idea that the importance of earlier releases for the determina-

tion of the true value decreases at an exponential rate. The extended pure news case corresponds

to α = 0.

In the following we assume that revisions beyond a certain horizon h0 are negligible, see for

example Jacobs and van Norden (2011), Aruoba (2005) and Swanson and van Dijk (2006) (who

coined the term “remaining revision”); not least because the effect of the RTSE-filter contributes

in damping any “remaining revision”. Formally, we assume that xh0+h
t = xh0−1

t for h ≥ 0 i.e.

xh0−1
t is the final data. This upper-limit h0 of the number of ‘relevant releases’ corresponds to the

dimension l of the observation vector in the Jacobs and van Norden model, see the appendix.

9The case h = 0 may be relevant for non-‘pure news’ cases. Consider the following (artificial) situation: x∞t = x∞1

(the noise variance in the state transition of the ‘true’ values vanishes) and xT−1
1 = x∞1 i.e. the last release xT−1

1 is

the true value. Then x∞T−j = x̂∞T−j = xT−1
1 for all j i.e. h = 0 applies, independently of the precise structure of the

revision process.

11



4.2 Setting-up MDFA-Designs: the Stationary Case

In the absence of data revisions, the ‘optimal’ real-time filter for estimating the signal in t = T

expands according to

ŷT =
L∑
j=0

bjx
0
T−j =

L∑
j=0

bjx
∞
T−j

where L is the filter length. In the presence of revisions we plug-in estimates of the true data:

ˆ̂yT :=
L∑
j=0

bj x̂
∞
T−j (23)

It appears that RTSE adds an extra aggregation layer to the vintage filtering/smoothing 20 of the

data. We now briefly analyze the consequence of this additional complexity layer.

Formally, one can plug equation 20 into 23 and rearrange terms in two different ways: the

outer summand in 25 refers to vintages (for fixed h the data-point xjT−(j+h) wanders along the h-th

column of the vintage triangle) whereas the outer-index of 26 emphasizes releases (for fixed h the

data-point xhT−j wanders along the h-th column of the release triangle):

ŷT =

T−1∑
j=0

bj

T−j−1∑
l=−j

j+l∑
h=0

γj+l−hj,j+l x
j+l−h
T−(j+l)

 (24)

=
T−1∑
h=0

T−1−h∑
j=0

(
j∑
l=0

blγ
j
l,j+h

)
xjT−(j+h)

=
T−1∑
h=0

T−1−h∑
j=0

bj,j+hx
j
T−(j+h) (25)

=

T−1∑
h=0

T−1∑
j=h

(
j∑
l=0

blγ
h
l,j

)
xhT−j

=

T−1∑
h=0

T−1∑
j=h

bhjx
h
T−j =

T−1∑
h=0

T−1−h∑
j=0

bh,j+hx
h
T−(j+h) (26)

where we defined

bhj :=

j∑
l=0

blγ
h
l,j (27)

for j ≥ h (and similarly for bj,j+h). The first representation 25 is convenient when working with

vintages (and possibly vintage restrictions). The second one 26 emphasizes releases: the index

h of its outer summand fixes the h-th data-release. It is in some sense a natural choice because

releases are (assumed to be) statistically congruent and because cointegration constraints are more

meaningfully applied to releases than to vintages, see the discussion in Hecq and Jacobs (2009)
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as well as section 6.1 in the appendix. Interestingly, the reduced-form expression 27 implies that

the convolution literally ‘integrates out’ the l-dimension of the three-dimensional index (l, j, h) of

γhl,j . Thus, if we focus on a ‘direct’ determination of the filter weights bhj , then a whole section of

the ‘structure’ determining the three-dimensional index-space l, j, h of the revision-filter/smoother

collapses10.

We now consider the case of ‘extended pure news’, as discussed in the previous section, for

which h = 0 in 25:

ŷT =

L∑
j=0

bmin(h0−1,j),jx
min(h0−1,j)
T−j (28)

where bmin(h0−1,j),j =

j∑
l=0

blγ
min(h0−1,j)
l,j (29)

As shown in the appendix, expression 28 can be transposed into the frequency-domain

L∑
j=0

bmin(h0−1,j),j exp(−ijωk)Ξ
min(h0−1,j)
TX (ωk) (30)

where Ξ
min(h0−1,j)
TX (ωk) is the DFT of the corresponding column xmin(h0−1,j) of the release triangle11.

Defining DFT’s on the releases, instead of the vintages, makes sense because of our statistical

congruency assumption. Accordingly, criterion 7 is generalized to

2π

T

T/2∑
k=−T/2

∣∣∣∣∣∣Γ(ωk)Ξ
h0−1
TX (ωk)−

L∑
j=0

bmin(h0−1,j),j exp(−ijωk)Ξ
min(h0−1,j)
TX (ωk)

∣∣∣∣∣∣
2

→ min
bmin(h0−1,j),j

(31)

We refer to the appendix for details about the derivation of this expression which is valid for

stationary data. It is easily seen that criterion 31 (‘extended pure news’ case) is a generalization

of 7 by noting that ΞjTX(ωk) = Ξ0
TX(ωk) for all j in the absence of revisions. Customization of the

mean-square criterion can be obtained by plugging

Γ̃(ωk) :=
L∑
j=0

bmin(h0−1,j),j exp(−ijωk)
Ξ

min(h0−1,j)
TX (ωk)

Ξh0−1
TX (ωk)

(32)

into 16 and by applying 18. The structure imposed by the extended pure news case spills over the

10Trivially, a projection must occur because the parameter triangle is two-dimensional ‘only’: 27 then assigns a

closed-form expression to this projection.
11For ease of exposition and notation we neglected the fact that the time series upon which Ξ

min(h0−1,j)
TX (ωk) are

based are not of equal length: this issue can be tackled easily in practice and therefore we here omit a discussion on

a bland topic.
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parameter release triangle:

0 0 ... 0

bh0−1,L 0 ... 0

... ... ... ...

bh0−1,h0 0 ... 0

bh0−1,h0−1 0 ... 0

... 0 ... 0

b11 0 ... 0

b00 0 ... 0


In contrast to standard multivariate frameworks the observed ‘single-lag’ arrangement of filter pa-

rameters is pretty uncommon.

Next up, we consider general revision dynamics by adopting the data arrangement entailed by

the release triangle 2. Specifically, we rewrite the time-domain expression 26 by accounting for the

upper-limit h0 of the number of useful releases as well as for a finite filter-length L

h0−1∑
h=0

L−h∑
j=0

bh,j+hx
h
T−(j+h)

Transposed into the frequency-domain this expression becomes (see the appendix for further de-

tails):

h0−1∑
h=0

L−h∑
j=0

bh,j+h exp(−i(h+ j)ωk)Ξ
h
TX(ωk)

=

h0−1∑
h=0

Γ̂h(ωk)Ξ
h
TX(ωk) (33)

where

Γ̂h(ωk) := exp(−ihωk)
L−h∑
j=0

bh,j+h exp(−ijωk) (34)

(we assume L ≥ h0 as usual). The left/upper-triangular shape of the parameter release triangle 19 is

accounted for by the back-shift operator exp(−ihωk) in this expression. The associated generalized

optimization criterion becomes

2π

T

T/2∑
k=−T/2

∣∣∣∣∣Γ(ωk)Ξ
h0−1
TX (ωk)−

h0−1∑
h=0

Γ̂h(ωk)Ξ
h
TX(ωk)

∣∣∣∣∣
2

→ min
bh,j+h

(35)

(L ≥ h0 is assumed). An extension to non-stationary processes is proposed in the appendix, see

58.
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If later vintages dominate earlier releases we may use the parametrization introduced in the

previous section and plug 22 into 27 to obtain:

bh,j+h := αjbj+h,j+h (36)

For h < h0. Note that for j + h > h0− 1 we formally identify the (fictive) parameter bj+h,j+h with

bh0−1,j+h/α
j+h−(h0−1). As a result

Γ̂h(ωk) := exp(−ihωk)
L−h∑
j=0

αjbj+h,j+h exp(−ijωk) (37)

and the number of freely determined filter parameters would match the ‘extended pure news’ case

31, up to the additional weighting α linking releases. The atypical structure imposed by the

revision framework on the multivariate filter design implies that the filter weights in Γ̂h(ωk) in 37

are an (uncommon) combination of cross-sectional exponential decay αj and of proper longitudinal

signal-extraction bj+h,j+h weights, as summarized in the parameter release triangle:

0 0 ... 0

... 0 ... 0

0 0 ... 0

αLbL,L αL−1bL,L αL+1−h0bL,L 0 ... 0

... ... ... ... ... ... ...

αh0+1bh0+1,h0+1 αh0bh0+1,h0+1 ... α2bh0+1,h0+1 0 ... 0

αh0bh0,h0 αh0−1bh0,h0 ... ... αbh0,h0 0 ... 0

αh0−1bh0−1,h0−1 αh0−2bh0−1,h0−1 ... ... bh0−1,h0−1 0 ... 0

... ... ... 0 ... 0

αb11 b11 0 ... 0

b00 0 ... 0



(38)

For notational ease we substituted the (fictive) expression αkbh0−1+k,h0−1+k to the (existing) pa-

rameter bh0−1,h0−1+k in all the above expressions. The generalization of the previous mean-square

criteria to the customization in 18 is straightforward.

4.3 An Extension to Non-Stationary Time Series

Hecq and Jacobs (2009) argue “This paper clarifies the link between different ways of modeling

cointegration in nonstationary real-time data within a multivariate dynamic time series framework,

using VAR, VECM and restricted VAR representations. We emphasize the alternative ways to

deal with the diagonals of the vintage triangle and observe the pros and cons of the different ap-

proaches” and, further on p.15 “The presence of cointegration implies that a linear combination
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between diagonals is stationary”. We position our approach in continuation of this discussion and

consider diagonals of the vintage triangle - columns of the revision triangle - as well. However,

we propose a generalization of the traditional cointegration concept which tackles RTSE through

specific filter constraints in the unit root frequency/ies (rather than through model-constraints).

We briefly sketch the topic: a comprehensive technical treatment is provided in Wildi (2008.2).

In the following we assume that xt in 3 is integrated with a (single) unit root in frequency zero;

we also assume that Γ(0) > 0 such that yt and xt are indeed (co)integrated12. Then any of the

proposed univariate minimization criteria in section 3.1 would (attempt to) establish cointegration

between the real-time estimate ŷt and the signal yt - implicitly - because the filter mean-square

error is minimized. Besides this implicit built-in mechanism we here propose a formal framework

for working with the relevant cointegration structure through suitable filter-constraints. To start,

we consider the univariate criterion 7. Theorem 10.18 in Wildi (2008.1) implies that the simple

filter-constraint

Γ̂(0) = Γ(0)

imposed upon the one-sided filter Γ̂(·) in the unit-root frequency zero ensures that ŷt ‘tracks’ the

level of yt: both series are cointegrated. An intuitive - informal - argument goes as follows

E[(yt − ŷt)2] =

∫ π

−π
|Γ(ω)− Γ̂(ω)|2dS(ω)

=

∫ π

−π
|Γ(ω)− Γ̂(ω)|2 S̃(ω)

|1− exp(−iω)|2
dω

=

∫ π

−π

|Γ(ω)− Γ̂(ω)|2

|1− exp(−iω)|2
S̃(ω)dω

where S(·) is the pseudo-spectral distribution of the non-stationary process generating xt and S̃(·)
is the spectral distribution of its stationary first differences. The last equality illustrates that tra-

ditional spectral factorizations apply, as expected, but one should consider |Γ(ω)−Γ̂(ω)|2
|1−exp(−iω)|2 in place of

|Γ(ω) − Γ̂(ω)|2. Theorem 10.18 in Wildi (2008.1) provides a rigorous derivation of this significant

notational trick. Note that the latter expression above emphasizes the importance of the proposed

filter restriction (a simple first order regularity argument is needed to ensure that the singularity

is removed effectively). A general test for verifying (falsifying) the pertinence of the proposed real-

time filter restriction is proposed in chapter 6 in Wildi (2008.1).

In the multivariate revision context of the previous section we assume that all pairwise cointe-

gration vectors linking the columns of the release triangle are (1,−1), see Hecq and Jacobs (2009).

12Under standard regularity assumptions about Γ(ω) the time series yt − Γ(0)xt is stationary.
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Then, as shown in Wildi (2008.2), the pertinent filter restriction is

h0−1∑
h=0

Γ̂h(0) = Γ(0) (39)

for the transfer functions defined in 34 (a sketch of the proof is provided in the appendix). In this

case, the stationary ‘form’ 35 of the optimization criterion has to be modified in order to account for

the non-stationarity as well as for the long-term equilibrium linking releases, see 58 in the appendix.

5 Conclusion

Combining RTSE and revision dynamics in a unified framework is an exigent statistical estimation

problem entailing simultaneous control of one- and multi-step ahead forecasting performances in an

unusual (triangularly-shaped) multivariate time series framework. We here propose to unify RTSE

and revision topics in a reduced-form form approach which addresses filter parameters ‘directly’.

Thereby we avoid to specify ‘redundant’ structure which is integrated out by the additional (signal

extraction) aggregation layer. Moreover, our reduced-form approach allows for a variety of prac-

tically relevant customizations, by emphasizing a fundamental timeliness-reliability dilemma: the

latter generalizes the classical mean-square paradigm. This type of optimization criterion offers a

natural interface which allows the user to operationalize a wide range of research priorities. Our

approach is generic in the sense that the user could plug any signal specification and any spectral

estimate into the proposed optimization criteria. In particular he could replicate classical uni-

and multivariate model-based approaches and/or classical filter designs - by providing the corre-

sponding spectral contents - and he could customize performances of such designs. We mark our

own (subjective) preference for the (pseudo-) DFT for which open source R-script and illustrative

examples are available and maintained on SEFBlog, see the appendix for reference.

6 Appendix

6.1 Vintage vs. Release Triangle: Statistical Congruency

The following assumption about the release triangle will be useful when setting-up our approach.

Hypothesis: The columns of the release triangle 2 are statistically congruent time series. To

be more specific we assume that the columns are either stationary in levels or in first (eventually

higher order) differences.

From a subject matter perspective, we assume that data providers process data ‘identically’

over time i.e. they aim at a reliable publication policy. Our hypothesis seems to be in accordance
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with the recent approaches proposed by Jacobs and van Norden (2011) and by Hecq and Jacobs

(2009). There is, however, a singular occurrence which eventually conflicts with the above assump-

tion, namely so-called benchmark revisions. Hecq and Jacobs consider benchmark revisions in the

context of cointegration and they compare two well-known model-structures (observation balanced

and vintage balanced systems) with respect to co-breaking. With regards to cointegration, specif-

ically, the authors argue on p.15: “Indeed, it is not very interesting to investigate the presence

of long-run relationship between the verticals of the real-time data matrix, i.e. between vintages

... because the series are radically identical except for the last two or three years” and further

“The presence of cointegration implies that a linear combination between diagonals is stationary”.

Patterson and Heravi (1991, 2004.1) consider vintages of UK GNP and they argue “Was it possible,

therefore, to relate GNP on the most recent basis back to previous published series? ... By using

the estimated long-run relationship amongst the different vintages, all the time series can be put

onto a single and comparable base”. According to their findings, vintages are cointegrated and the

cointegration rank is one. Pain (1994) analyzes forecasts produced by the National Institute of

Economic and Social Research and argues “Our results also fail to reject non-cointegration between

different vintages of data, suggesting that considerable care should be exercised in both the choice

of realisation data used and in the means by which efficiency is tested”. Despite the technically

subtle difference between ‘not falsifying non-cointegration’ and ‘falsifying cointegration’, located

on the level of the respective null-hypotheses, we can infer that the latter author seems to dis-

agree with the formerly cited. Going further, Knetsch and Reimers (2009) consider “The Case of

German Production and Orders Statistics” and they argue: “The distinct vintage transformation

functions found for industrial production and orders imply that the benchmark revision alters the

estimates of the cointegrating relation. This corollary is rather unpleasant because cointegrating

relations are typically interpreted as long-run economic relationships and, thus, of central inter-

est in many empirical applications”. Addressing benchmark revisions specifically, Patterson and

Heravi (2004.2) document difficulties and pitfalls associated with linear rebiasing. In this context,

Knetsch and Reimers (2009) argue “Moreover, hypothesis tests check whether benchmark revisions

are innocuous with regard to the parameters of cointegrating relations and whether differencing

and rebasing are inadequate methods for adjusting real-time data for benchmark revisions. Ac-

cording to theoretical arguments as well as the empirical evidence from the application at hand,

vintage transformation functions estimated by cointegrating regressions have been proven to be

flexible means of creating congruent real-time data sets”. Let us now attempt to distil a pragmatic

strategy from these findings.

The above partially conflicting outcomes reflect the diversity of application fields (type of na-

tional time series), tests (is the null-hypothesis cointegration or non-cointegration) or data arrange-

ments (vintages or diagonals). Unsurprisingly, no fixed pattern emerges from our brief review. As

18



a result, we here take on a pragmatic perspective and assume that our hypothesis (statistical con-

gruency of releases) is satisfied up to benchmark revisions and that the latter can be tackled either

by ‘standard’ rebasing or by more sophisticated techniques as proposed by Knetsch and Reimers

(2009), for example. In any case, we assume that our hypothesis is satisfied after a suitable trans-

formation of the data. This choice dictates cointegration across releases (columns in 2) rather than

across vintages (columns in 1): we here follow the convincing argument proposed by Hecq and

Jacobs (2009), as cited above.

6.2 State-Space Approach

The generic state-space model in Jacobs and van Norden (2011) starts as

xt = Zat

at+1 = Tat + Rot

The observation vector is defined as xt = (x1
t , ..., x

l
t)
′13 which corresponds to rows in either vintage

or release forms 1, 2. The state vector at and the observation matrix Z are partitioned according

to

at = (x∞t , ft,mt,nt)
′

Z = (Z1,Z2,Z3,Z4)

where ft is a b-dimensional vector describing time-dynamics of the ‘true’ x∞t , mt is an l-dimensional

news component, nt is an l-dimensional noise component, Z1 is an l-dimensional vector of one’s,

Z2 is an l ∗ b-matrix of zeroes, and Z3, Z4 are l ∗ l-dimensional identities. Accordingly, the state-

transition matrix T can be partitioned into

T =


T11 T12 0 0

T21 T22 0 0

0 0 T3 0

0 0 0 T4


where the above blocks are conformably defined matrices corresponding to the partition of at.

Finally, R is partitioned into an (1 + b+ 2l) ∗ r matrix

R =


R1 R3 0

R2 0 0

0 −U1diag(R3) 0

0 0 R4


13The authors allow for a publication lag of one time unit which explains that the first release is x1t (whereas we

assumed x0t to be the first one).

19



where U1 is l ∗ l with zeroes below the main diagonal and ones everywhere else, R3 = (σm1, ..., σml)

where σmi is the standard error associated with xit and R4 is l ∗ l. Finally, the error term in

the transition matrix is partitioned into ot = (o′et,o
′
mt,o

′
nt)
′ where the sub-vectors address errors

associated to the ‘true’ values, the news and the noise components respectively. Jacobs and van

Norden populate the system-matrices by discriminating various practically relevant cases.

The pure noise case is set-up by defining

at =


x∞t

ft

nt

 , T =


T11 T12 0

T21 T22 0

0 0 0

 , R =


R1 0

R2 0

0 R4


and Z = (Z1,Z2,Z4). The noise structure is imposed by setting

R4 =


σn1 0 . 0

0 σn2 . 0

0 0 . 0

0 0 . σnl


i.e. the noise component is independently (but not necessarily identically) distributed. An increas-

ing precision of observations over time could be ensured by imposing monotonically increasing noise

variances σni < σnj for i < j.

The pure news case is accounted for by setting

at =


x∞t

ft

mt

 , T =


T11 T12 0

T21 T22 0

0 0 0

 and Z = (Z1,Z2,Z3)

Imposing the news structure is achieved through

R =


R1 R3

R2 0

0 −U1diag(R3)


such that

x∞t+1 = T11x
∞
t + T12ft + R1oet + R3omt

mt+1 = −U1diag(R3)ont =


σm1 σm2 . σml

0 σm2 . σml

. . . .

0 . 0 σml


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The model implies that xjt encompasses xit, in informational terms, if j > i i.e. more recent vintages

encompass earlier ones.

Spillovers correspond to relationships between measurement errors in different economic time

periods. They are structurally unrelated to the previous two revision components and can be ac-

counted for by T3 or T4 in the state transition matrix T.

The most general revision process in this approach is obtained by a superposition of all

three components.

Dynamics of true values are tackled by the system matrices T11,T12,T21,T22 in the general

state transition matrix T, as well as by the variance covariance matrices R1 and R2. An ARMA

process is obtained by setting

nt = (x∞t−1, ..., x
∞
t−p+1, εt, ..., εt−q+1)′

(
R1

R2

)
=


σε

1p−1

σε

1q−1


(

T11 T12

T21 T22

)
=


AR′ MA′

Ip−1 0

0 0

0 Iq−1|0


where AR and MA contain the autoregressive and moving averages coefficients. Jacobs and van

Norden also propose a transposition of a structural time series model which is omitted here.

6.3 DFA and Revisions: Reduced-Form Criterion

We here focus on the link between 28 and 30 in section 4. We first note that the ‘no-revision’

case has been tackled in Wildi (2008.1), chapter 3. Let us briefly summarize the main ideas

behind the original DFA before proceeding to revisions. For this purpose consider the following

equality/approximation:

1

T

T∑
t=1

(yt − ŷt)2 =
2π

T

T/2∑
k=−T/2

∣∣∣ΞT,Y−Ŷ (ωk)
∣∣∣2 (40)

≈ 2π

T

T/2∑
k=−T/2

∣∣∣Γ(ωk)− Γ̂(ωk)
∣∣∣2 |ΞTX(ωk)|2 (41)
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where yt is the target signal 3, ŷt is the output of the one-sided filter 4 (28 in the case of revisions)

and ΞT,Y−Ŷ (ωk) is the DFT of their difference. The first equality 40 is the standard (finite-sample)

spectral factorization of the (finite sample) mean-square filter error. It is a ‘number identity’

and therefore it can pretend to generality, see proposition 10.4 in Wildi (2008.1): note that these

‘numbers’ are not observed in finite samples, though, and therefore our identity is in some sense

fictive. The approximation in 41 results from the application of a standard finite-sample convolution

result, see for example Brockwell and Davis (1993), theorem 10.3.1: now these ‘numbers’ are

observed. A less-known result addresses the magnitude of the approximation error: Proposition

10.8 in Wildi (2008.1) asserts that 41 is a superconsistent estimate of the mean-square filter error

i.e. the approximation error is of smaller magnitude than the traditional 1/
√
T -order under fairly

general assumptions about the DGP of xt as well as the transfer functions Γ(·) and Γ̂(·) (including,

for example, traditional ARMA-models). An extension of the results to non-stationary integrated

processes can be obtained very easily by noting that the right-hand side of 40 addresses the filter

error: the latter is generally (supposed to be) stationary even if the DGP of xt isn’t. To be more

precise: one can impose real-time filter constraints such that signal and real-time estimates are

cointegrated, see section 4.3. Therefore, the validity of standard frequency-domain results is still

ensured. However, some care is necessary when referring to 41 because the convolution unfolds the

non-stationarity. As shown in Wildi (2008.1), chapter 6, the DFT of an integrated process may

be affected by severe bias due to unit-root leakage over the whole frequency spectrum. Therefore,

Wildi (2008.1) (chapter 6) proposes to use the pseudo-DFT

ΞT∆dX(ωk)

(1− exp(−iωk))d

(where ∆dX are stationary differences and d is the integration order) in lieu of the ordinary DFT

in 41 and to impose filter constraints in frequency zero such that the resulting singularities are

removed (this proceeding extends straightforwardly to unit-roots in arbitrary frequencies). A rig-

orous derivation of these results is proposed in theorem 10.18 in the cited literature. Note that

the mean-square filter error (left side of 40) is generally not observable, because the signal yt isn’t,

whereas 41 is (observable): therefore filter parameters can be optimized by minimizing the latter

expression. Efficiency arguments of the corresponding DFA rely on the fact that 41 is a (uniformly)

superconsistent estimate of 40 and that the latter is an (asymptotically) efficient estimate of the

true unknown mean-square filter error E[(yt − ŷt)
2], see propositions 10.16 and 10.17 in Wildi

(2008.1). Moreover, 41 lends itself to powerful customization, as illustrated in 13 or 18. Taken

together, these formal results underline the potential of the ‘Direct’ Filter-Approach.
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We now address the ‘revision’-part by emphasizing the ‘extended pure news’ case, for simplicity:

1

T

T∑
t=1

(yt − ŷt)2 =
1

T

T∑
t=1

yt − L∑
j=0

bmin(h0−1,j),jx
min(h0−1,j)
t−j

2

=
2π

T

T/2∑
k=−T/2

∣∣∣ΞTY−Ŷ (ωk)
∣∣∣2 (42)

≈ 2π

T

T/2∑
k=−T/2

∣∣∣∣∣∣Γ(ωk)Ξ
h0−1
TX (ωk)−

L∑
j=0

bmin(h0−1,j),j exp(−ijωk)Ξ
min(h0−1,j)
TX (ωk)

∣∣∣∣∣∣
2

(43)

In analogy to the standard ‘no revision’ case, criterion 31 (expression 43) minimizes the (unobserv-

able) finite sample filter error up to the approximation error linking 42 and 43. In the absence of

revisions, expression 43 simplifies to 41 since Ξ
min(h0−1,j)
TX (ωk) = Ξ0

TX(ωk) can be isolated as outer

periodogram. If the different DFT’s cannot be isolated as a single outer periodogram, then the orig-

inal results in Wildi (2008.1) do not apply anymore. In this case we have to invoke the more general

theorem 7.1 in Wildi (2008.2). Let us sketch the point linking 28 and 30. For this purpose we com-

pare the DFT ΞT Ŷ (ωk) of the real-time estimate ŷt with the frequency domain expression 30 found

in the optimization criterion: note that ΞTY−Ŷ (ωk) = ΞTY (ωk)− ΞT Ŷ (ωk) and therefore ΞT Ŷ (ωk)

is a ‘key-element’ in 42, which is identified with
∑L

j=0 bmin(h0−1,j),j exp(−ijωk)Ξ
min(h0−1,j)
TX (ωk) in

43 (whereas ΞTY (ωk) is identified with Γ(ωk)Ξ
h0
TX(ωk)). We here check the pertinence of this

identification:

ΞT Ŷ (ωk) =
1√
2πT

T∑
t=1

 L∑
j=0

bmin(h0−1,j),jx
min(h0−1,j)
t−j

 exp(−itωk)

=
L∑
j=0

bmin(h0−1,j),j exp(−ijωk)

(
1√
2πT

T∑
t=1

x
min(h0−1,j)
t−j exp(−i(t− j)ωk)

)
(44)

=

L∑
j=0

bmin(h0−1,j),j exp(−ijωk)

(
1√
2πT

T∑
t=1

x
min(h0−1,j)
t exp(−itωk)

)
+R (45)

=
L∑
j=0

bmin(h0−1,j),j exp(−ijωk)Ξ
min(h0−1,j)
TX (ωk) +R

The error term R appearing in 45 comes from replacing the time-index t − j by t in the inner

summand: incidentally, ΞT Ŷ (ωk) is not observable but
∑L

j=0 bjj exp(−ijωk)Ξ
min(h0−1,j)
TX (ωk) is. If

L is small, then it is readily seen that most summands in the inner sums of 44 and 45 coincide

and therefore the error-term is small (of order L/
√
T in absolute mean, assuming a stationary

process with finite first moment generating xt). In fact R remains of order 1/
√
T if we assume

that bmin(h0−1,j),j converge to zero at a suitable rate, see proposition 7.4 in Wildi (2008.2). The
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technical proof of the superconsistency in this proposition brings into play an additional aggregation

layer, namely the outer-sum in the optimization criterion (the sum over the frequency-grid ωk in

expression 43 above). Superconsistency is obtained although R in 45 is of order 1/
√
T because the

additional aggregation layer brings into play kind of a generalized law of large numbers argument

which is evoked in Brockwell and Davis (1993), proposition 10.8.5. As an outcome, the error term in

43 is of smaller order than 1/
√
T (in absolute mean) if all ‘filter-terms’ (one-sided filter bmin(h0−1,j),j

and bi-infinite filter γk) decay sufficiently rapidly towards zero (classical ARMA models satisfy this

restriction, for example). This ‘technical’ finite-sample multivariate convolution result links 28 and

30 formally, as intended.

6.4 Non-Stationarity: Cointegration and Filter Constraints

Consider the case of multiple (f) cointegration constraints linking xt and wnt, n = 1, ...,m, in a

general multivariate framework:

Xt − α11W1t − ...− α1mWmt ∼ I(0)

Xt − α21W1t − ...− α2mWmt ∼ I(0)

...

Xt − αf1W1t − ...− αfmWmt ∼ I(0)

Any linear combination

f∑
j=1

wjXt −
f∑
j=1

wjαj1W1t − ...−
f∑
j=1

wjαjmWmt

is stationary (it is assumed from now on that
∑f

j=1wj = 1). Wildi (2008.2) then shows that

Γ̂Wi(0) =

 f∑
j=1

wjαji

 (Γ(0)− Γ̂X(0)), i = 1, ..., n (46)

are both necessary and sufficient filter restrictions in order to impose stationarity of the (real-time)

filter error i.e. the real-time estimate and the signal are cointegrated. Transposed to the framework

of section 4.3 we deduce:

αij = δij , 0 ≤ i, j ≤ h0 − 1

where the Kronecker-delta δij =

{
1, i = j

0 otherwise
reflects the pairwise (1,-1) cointegration vectors.

Using the notation introduced in section 3.2 and definition 34 we have Γ̂h(·) = Γ̂Wi(·), h = 1, ..., h0−
2 and Γ̂h0−1(·) = Γ̂X(·). Inserting into 46 and integrating out wj (summing-up over h) we then
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obtain:

h0−2∑
h=0

Γ̂h(0) =

h0−2∑
h=0

h0−2∑
j=0

wjδjh

 (Γ(0)− Γ̂h0−1(0)) (47)

= (Γ(0)− Γ̂h0−1(0)) (48)

confirming 39. We now generalize criterion 35, valid in the stationary case, to the postulated non-

stationary setting, specifically: I(1)-DGP’s and (1,−1) cointegration vectors linking releases xh0−1
t

and xht , for h < h0 − 1. For this purpose we consider the filter error rT = yT − ŷT (our selection

t = T is merely for notational convenience since we thereby emphasize the real-time aspect):

rT =

∞∑
l=−∞

γlx
h0−1
T−l −


L∑

l=h0−1

bh0−1,lx
h0−1
T−l +

h0−2∑
h=0

(
L∑
l=h

bhlx
h
T−l

)
Note that rT cannot be observed because the signal yT is unknown. We now decompose this filter

error according to theorem 7.1 in Wildi (2008.2): in the following notation ‘non-existing’ coefficients

bh0j are set to zero for j outside of the natural domain of definition of the index.

rT =

∞∑
l=−∞

γlx
h0−1
T−l −


L∑

l=h0−1

bh0−1,lx
h0−1
T−l +

h0−2∑
h=0

(
L∑
l=h

bhlx
h
T−l

)
=

∞∑
l=−∞

(γl − bh0−1,l)
(
xh0−1
T + (xh0−1

T−l − x
h0−1
T )

)
−
h0−2∑
h=0

(
L∑
l=h

bhl

(
xhT + (xhT−l − xhT )

))
(49)

= (Γ(0)− Γ̂h0−1(0))xh0−1
T −

h0−2∑
h=0

Γ̂h(0)xhT (50)

+
∞∑

l=−∞
(γl − bh0−1,l)(x

h0−1
T−l − x

h0−1
T ) (51)

−
h0−2∑
h=0

(
L∑
l=h

bhl(x
h
T−l − xhT )

)
(52)

where we used

Γ̂h(0)xhT =

(
L∑
l=h

bhl

)
xhT

which are extracted from 49. The main intention behind this decomposition is that non-stationary

variables in level appear in 50: we can thus impose ‘cointegration’ of yt and ŷt - equivalently: a

finite mean-square filter error E[r2
t ] - through suitable filter constraints in frequency zero. The

link between 50 and the filter constraint 48 is straightforward. The remaining terms 51 and 52

put in evidence differences with variable lag (time-span): if all filter coefficients decay sufficiently

rapidly, asymptotically, then the potential non-stationarity resulting from the increasing spread

of the difference-lag is contained and rt is stationary. This last result illustrates the importance
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of ‘regularity constraints’ afforded by theorem 7.1 in Wildi (2008.2) (readers interested in formal

derivations of the above claims are referred to the proof of the theorem). We now define

cT := (Γ(0)− Γ̂h0−1(0))xh0−1
T −

h0−2∑
h=0

Γ̂h(0)xhT (53)

Imposing 48 implies that the process ct is stationary. Let ΞTC(ωk) designate the corresponding DFT

(of a finite realization of ct). Theorem 7.1 shows that the DFT of rt (which cannot be observed)

can be estimated by the following frequency-domain expression, relying on 50-52:

Ξ′Tr(ωk) :=

{
∆ΓX(0)ΞTC(ωk) (54)

− exp(iωk)

[
∆ΓX(0)− exp(−iωk)∆ΓX(ωk)

1− exp(−iωk)
−∆ΓX(0)

]+

Ξh0−1
T∆X(ωk) (55)

+

[
∆ΓX(0)− exp(−iωk)∆ΓX(ωk)

1− exp(−iωk)

]−
Ξh0−1
T∆X(ωk) (56)

+

h0−2∑
h=0

exp(iωk)

[
Γ̂h(0)− exp(−iωk)Γ̂h(ωk)

1− exp(−iωk)
− Γ̂h(0)

]
ΞhT∆X(ωk)

}
(57)

where ∆ΓX(ωk) := Γ(ωk) − Γ̂h0−1(ωk), ΞhT∆X(ωk) is the DFT of xht − xht−1, h = 0, ..., h0 − 1, and

where the ‘plus’ and ‘minus’ superscripts in 55 and 56 mean the following positive and negative

expansions:[
∆ΓX(0)− exp(−iωk)∆ΓX(ωk)

1− exp(−iωk)

]−
=

−1∑
l=−∞

 l∑
j=−∞

γj

 exp(−ilωk)

[
∆ΓX(0)− exp(−iωk)∆ΓX(ωk)

1− exp(−iωk)

]+

=
∞∑
l=0

 ∞∑
j=l

(γj − bh0−1,j)

 exp(−ilωk)

(note that bh0−1,j = 0 for j < h0 − 1 and therefore it does not appear in the upper formula, right

side). Finally

Γ̂h(0)− exp(−iωk)Γ̂h(ωk)

1− exp(−iωk)
=

∞∑
l=0

 ∞∑
j=l

bhj

 exp(−ilωk)

It is again assumed that filter coefficients vanish if subscripts are outside of their domain of defini-

tion. The interested reader is referred to the proof of theorem 7.1 in Wildi (2008.2).

Let us briefly comment these results. The estimate Ξ′Tr(ωk) as defined by 54 is an efficient

estimate of the (unobservable) DFT ΞTr(ωk) of the (unobservable) filter error rT in the case of non-

stationary (cointegrated) releases. Therefore, filter coefficients bhj can be determined by minimizing∑
|k|≤T/2

∣∣Ξ′Tr(ωk)∣∣2 → min
bhj

(58)
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Criterion 58 is an extension of 35 to the non-stationary case14. It inherits all (uniform) efficiency

properties applying to the univariate DFA and/or the multivariate stationary case 35: the resulting

real-time filter minimizes an efficient estimate of the unobservable mean-square filter error. Cus-

tomizations in view of tackling the timeliness-reliability dilemma could be obtained in the same vein

as 18. Note, once again, that the user could supply model-based spectral representations instead

of DFT’s. Releases xht enter in levels through 54 and in stationary first differences through 55-57.

The latter expressions highlight the importance of the pseudo-DFT’s which, in turn, emphasize the

relevance of the pseudo-spectral densities and cross pseudo-spectral densities. Relaxing the intu-

itive filter constraint ∆ΓX(0) = 0 = Γ(0)− Γ̂h0−1(0) by imposing the less stringent restriction 48,

instead, implies that the stationary cointegration residuum 53 enters into the optimization through

54. Note that the cointegration term ct addresses the filter fit ∆ΓX(0) in frequency zero, only. All

other frequencies ωk, k > 0, are entering the optimization through the pseudo-DFT’s. Potential

non-singularities in the pseudo-spectral representations 55-57 are removed by imposing regularity

conditions ensuring a ‘sufficiently fast’ asymptotic decay (towards zero) of filter coefficients. Finite

MA-filters satisfy these requirements trivially and stable ARMA filters satisfy them automatically.

The above design relies heavily on our initial assumptions namely that the pairwise cointegration

vectors of the first h0 releases are (−1, 1), recall the discussion in section 4.3 as well as section 6.1.

In case of significant departures from these assumptions theorem 7.1 in Wildi (2008.2) provides a

general framework for working with reduced-form ‘filter constraints’.

6.5 List of Selected Blog-Entries

6.5.1 Background Information

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/142-Discrete-Fourier-and-Inverse-Fourier-

Transforms-an-Atheoretical-Descriptive-Experimental-Approach.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/143-Orthonormal-Decompositions-in-Time-

and-Frequency-Domains.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/144-The-Filter-Effect.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/146-Real-Time-Signal-Extraction-RTSE-

the-Generic-Model-Based-Perspective.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/148-DFA-vs-Model-Based-Approach-Overfitting,-

Richly-Parameterized-Designs-and-the-Virtues-of-Customized-Optimization-Criteria.html

14With assumed cointegration vectors (1,−1) linking the first release x0t with all successive releases.
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6.5.2 Mean-Square Perspective

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/149-DFA-Customization-Minimizing-the-

Mean-Square-Filter-Error.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/150-The-DFA-in-a-Mean-Square-Perspective-

a-Wrap-Up.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/159-I-DFA-Exercises-Part-I-Mean-Square-

Criterion.html

6.5.3 Customization

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/130-Analytical-DFA-Enhancing-Model-

Based-Approaches-by-Accounting-for-Reliability-and-Speed-of-Early-Real-Time-Estimates.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/147-Speed-and-Reliability-Issues-an-Introduction.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/160-I-DFA-Exercises-Part-II-Customization-

SpeedReliability.html

6.5.4 Filter Constraints (Non-Stationarity)

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/131-Real-Time-Filter-Constraints-and-

Unit-Roots.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/133-Some-More-Details-About-Real-Time-

Filter-Constraints.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/131-Real-Time-Filter-Constraints-and-

Unit-Roots.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/133-Some-More-Details-About-Real-Time-

Filter-Constraints.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/137-Real-Time-Filter-Constraints-Revisited-

a-Tale-About-the-Platonic-Idea-of-the-Data-Generating-Process.html

6.5.5 Tutorial

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/159-I-DFA-Exercises-Part-I-Mean-Square-

Criterion.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/160-I-DFA-Exercises-Part-II-Customization-

SpeedReliability.html
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6.5.6 Real-Time Indicators

• Real-time indicator for the US: http://www.idp.zhaw.ch/usri

• A review of well-known monthly US-indicators is documented on SEFBlog. It can be acceded

by selecting the category “Economic indicators” on the left margin.

6.5.7 R-Code

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/138-Analytical-DFA-a-Review-of-Code-

versions,-Examples-and-Parameters.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/159-I-DFA-Exercises-Part-I-Mean-Square-

Criterion.html

• http://blog.zhaw.ch/idp/sefblog/index.php?/archives/160-I-DFA-Exercises-Part-II-Customization-

SpeedReliability.html
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